

Volume 9, Issue 11, 306-312.

Review Article

ISSN 2277-7105

STATUS OF LATEX YEILDING PLANTS OF CHURU DISTRICT

Rakesh Kumar Verma*¹ and Dr. Manoj Kumar Yadav²

¹Department of Botany, S.P.C. Govt. College, Ajmer(Raj.)305001. ²Assistant Professor, Department of Botany, S.P.C. Govt. College, Ajmer(Raj.)305001.

Article Received on 22 July 2020,

Revised on 12 August 2020, Accepted on 02 Sept. 2020, DOI: 10.20959/wjpr202011-18657

*Corresponding Author Rakesh Kumar Verma Department of Botany, S.P.C. Govt. College, Ajmer(Raj.)305001.

ABSTRACT

Numerous plants contain latex, which is pouring as a slick solvent from cuts and wounds. Latex creates remarkable cells called laticificers. As a consequence, latexes in herbivore guard have a natural potential and, in turn, laticifers are a dumping ground for metabolic effects or stocks of biosynthetic content. Both latexes are emulsions, watery deposits of insoluble materials that that contain alkaloids, terpenes, saps, phenolics, proteins, carbohydrates, and hydrocarbons throughout the long chain. Not all latexes are versatile; some carrying hydrocarbons on long strings. Any latex was obtained for their tars or alkaloids. Latex, a clingy liquid that spreads out of

some plants following burns, can be extracted from anywhere in the region of four generations in excess of 20 000 animals. It is embedded in laticifers (specific cells or chains of latex-containing cells), which seals lesions when they crystallize when extracted from them. Aside from either the direct repair of the damage, latex capacities vary from either a plant-guard structure to the restoration of the mechanical properties of wounded plants. Likewise, the latices vary interspecifically, for example in the painting and intermediate composition, although there are lots of different types of laticifers. Crop groups generating overwhelming collagen steps comprise sunflower family Euphorb (Euphorbiaceae), family milkweed (Asclepiadaceae), family mulberry (Moraceae), family dogbane (Apocynaceae), and family lactuceae (Lactuceae).

INTRODUCTION

Natural rubber is a slick fluid released either by laticiferous tissues streams contained in crop hyacinth roots, branches, leaves and products.^[12] It is a mixture of various therapeutically diverse substances that display strong infectious enemy^[1], antiviral^[2], antifungal^[3] hazardous

to microbe behavior. It's also transmitted via Apocynaceae, Euphorbiaceae, Papaveraceae, Moraceae, and Asteraceae (Compositae) plant cells of the genus Asclepiadaceae in particular. The latex flows a longitudinal way through extended tubes that penetrate the plant's tissues, guiding entities and moving around like an excrete market. Adhesive, bish-percha, considered in designing, and whiffle balls are indeed the major market products of latex. Opium poppy latex (*Papaver somniferum*) was its cause of opium & morphine alkaloid.

From the last part of both the 1940s, fluid dispersing nanoparticles, or polyethylene emulsification or latexes, have also been commonly employed in the paint and coatings industry. These manufactured latexes, by mixing the plastic particles when the water vanishes, add a mask dispersed in the moisture and framework animations. Such eg, the characteristics of the films, toughness, inventiveness, robustness, sealing, highlighting management, and safety against synthetic concoctions — rely on polymer arrangements. Solvents based on ethylene and propylene, styrene, derivative of gatefold sodium carbonate and nylon polymerization were already efficiently exploited.

Currently, taxonomic and traditional medicinal analyses are considered as the strongest technique for separating or putting along gradual change species on certain plant species mentioned in previous readings for both the possible extraction of useful bioactive mixtures.^[15] The need for an ethnopharmacological and phylogenetic analysis review to identify and cataloge valuable therapeutic plants cannot really be overemphasized.^[16]

Research work examines the latex yeilding plantations used amongst community members to combat various diseases, and the corresponding documentation of those same species and their applications offers baseline knowledge for potential analyses.

MATERIALS AND METHODS

Region of Analysis

Churu seems to be the destination in Rajasthan's Shekhwati region. Churu region is arranged in the center bit of north-eastern Rajasthan between $27^{0}24'$ N to $29^{0}00'$ N and $73^{0}51'$ E to $75^{0}41'$ E longitude, having an area of approximately 13858 km². The area is a fragment including its Indian Thar Desert, set 400 metres above sea level. The geographic location is noteworthy for vast variations of circadian and sporadic temperatures varying from -20° C in winter to 49.8° C in summer season through shifting sand elevations, erratic and scant atmospheric conditions, and strong wind speeds, with bristly and powerless foliage. The soil texture and glorious sunshine are indeed the 2 main signature holdings that are bountifully widely available at that same landscape and therefore are essential for advancing sandy plant life with unpredictable restore property. Typically the entities in culture are acquainted with those kind of resurrection and ascension all around.^[8,9]

Plant assortment

Interpretations of arboretum is drawn from latex mystery species obtained through usual flora and plantations. For sufficient information accumulation of the latex producing plants of curiosity a picture and an arboretum sample of every other plant was taken in place. Documentation on growing plant was documented using the framework of the provided the appropriate.

Ordered distinguishing proof

A majority including its plant species being recognised throughout the area, and perhaps a written analysis identified those remaining ones. The arboretum samples were processed to the Department of Botany, SPC Govt, in the sight of separating the latex producing plants University, Ajmer for a distinction and clarification of the rational identity of growing plant. With more than just the development assistance of the Flora of Indian Desert^[4], Flora of North East Rajasthan^[13], Flora of Rajasthan^[14], the illustrations collected became comprehensively acknowledged. The verification and validation of the knowledge obtained was carried out in the context of normal writing.^[7,8,11,10,5] A overview of periodically providing Latex plants is offered as well along with his family throughout the Table no. 1 and the contribution of average percentage of families in this study is mention in Figure No. 1.

S.No.	Species	Genus	Family
1.	Alstonia scholaris	Alstonia	Apocynaceae
2.	Carissa congesta	Carissa	Apocynaceae
3.	Carissa spinarum	Carissa	Apocynaceae
4.	Catharanthus roseus	Catharanthus	Apocynaceae
5.	Catharanthus pusillus	Catharanthus	Apocynaceae
6.	Holarrhena pubescens	Holarrhena	Apocynaceae
7.	Nerium oleander	Nerium	Apocynaceae
8.	Plumeria rubra	Plumeria	Apocynaceae
9.	Plumeria obtusa	Plumeria	Apocynaceae
10.	Tabernaemontana divaricata	Tabernaemontana	Apocynaceae
11.	Tabernaemontana gamblei	Tabernaemontana	Apocynaceae
12.	Tabernaemontana alternifolia	Tabernaemontana	Apocynaceae
13.	Trachelospermum jasminoides	Trachelospermum	Apocynaceae

Table No. 1 – List of latex yielding plants of churu district.

14.	Thevetia peruviana	Thevetia	Apocynaceae
15.	Wrightia arborea	Wrightia	Apocynaceae
16.	Wrightia tinctoria	Wrightia	Apocynaceae
17.	Asclepias curssavcica	Asclepias	Asclepiadaceae
18.	Calotropis gigantea	Calotropis	Asclepiadaceae
19.	Calotropis procera	Calotropis	Asclepiadaceae
20.	Caralluma edulis	Caralluma	Asclepiadaceae
21.	Ceropegia bulbosa	Ceropegia	Asclepiadaceae
22.	Gymnema sylvestre	Gymnema	Asclepiadaceae
23.	Leptadenia pyrotechnica	Leptadenia	Asclepiadaceae
24.	Cryptostegia grandiflora	Cryptostegia	Asclepiadaceae
25.	Marsdenia tenacissima	Marsdenia	Asclepiadaceae
26.	Oxystelma esculentum	Oxystelma	Asclepiadaceae
27.	Pentatropis spiralis	Pentatropis	Asclepiadaceae
28.	Pergularia daemia	Pergularia	Asclepiadaceae
29.	Sarcostemma acidum	Sarcostemma	Asclepiadaceae
30.	Tylophora indica	Tylophora	Asclepiadaceae
31.	Launaea resedifolia	Launaea	Asteraceae
32.	Launaea remotiflora	Launaea	Asteraceae
33.	Launaea procumbens	Launaea	Asteraceae
34	Sonchus asper	Sonchus	Asteraceae
35.	Sonchus oleraceus	Sonchus	Asteraceae
36.	Parthenium hysterophorus	Parthenium	Asteraceae
37.	Argyreia nervosa	Argyreia	Convolvulaceae
38.	Ipomoea aquatica	Ipomoea	Convolvulaceae
39.	Ipomea cairica	Ipomoea	Convolvulaceae
40.	Ipomoea carnea ssp. fistulosa	Ipomoea	Convolvulaceae
41.	Ipomoea pes-caprae ssp. brasiliensis	Ipomoea	Convolvulaceae
42.	Ipomoea quamoclit	Ipomoea	Convolvulaceae
43.	Euphorbia caducifolia	Euphorbia	Euphorbiaceae
44.	Euphorbia cyathophora	Euphorbia	Euphorbiaceae
45.	Euphorbia heterophylla	Euphorbia	Euphorbiaceae
46.	Euphorbia granulata	Euphorbia	Euphorbiaceae
47.	Euphorbia hirta	Euphorbia	Euphorbiaceae
48.	Euphorbia milii	Euphorbia	Euphorbiaceae
49.	Euphorbia pulcherrima	Euphorbia	Euphorbiaceae
50.	Euphorbia thymifolia	Euphorbia	Euphorbiaceae
51	Euphorbia tirucalli	Euphorbia	Euphorbiaceae
52.	Euphorbia cotinifolia	Euphorbia	Euphorbiaceae
53.	Jatropha curcas	Jatropha	Euphorbiaceae
54.	Jatropha gossypifolia	Jatropha	Euphorbiaceae
55.	Pedilanthus tithymaloides	Pedilanthus	Euphorbiaceae
56.	Phyllanthus fraternus	Phyllanthus	Euphorbiaceae
57.	Ricinus communis	Ricinus	Euphorbiaceae
58.	Codiaeum variegatum	Codiaeum	Euphorbiaceae
59.	Croton bonplandianus	Croton	Euphorbiaceae
60.	Ficus benghalensis	Ficus	Moraceae

62.	Ficus elastica	Ficus	Moraceae
63.	Ficus religiosa	Ficus	Moraceae
64.	Argemone Mexicana	Argemone	Papaveraceae
65.	Argemone ochroleuca	Argemone	Papaveraceae
66.	Papaver somniferum	Papaver	Papaveraceae

CONCLUSION

There seems to be an indistinguishable need therefore record traditional latex-yielding plant use knowledge before anything gets bogged down to human companionship. The lack of clear written reports on the usage from certain plant species indicates that more phylogenetic analyses are necessary for documenting and reporting the accustomed use of rejuvenating plants in the Churu geographical area. This review identified many essential plants shown by this area's community pharmacists to cure diverse social signs and symptoms. It provides a gage of that same beneficial antimicrobial benefits of these plants for potential antioxidant and antimicrobial tests.

Figure No. 1: The contribution of average percentage of families.

Instead of focusing on experiments triggered by erratic analytical techniques, properly preserved traditional knowledge might well help practitioners identify certain plants where its antioxidant properties can investigate new technologies to benefit all humanity.^[6]

REFERENCES

- 1. Alamri, S.A., and Moustafa, M.F., *Argemone ochroleuca* Nice Rubber antimicrobial and antioxidant Action. Article arabia Pharmacy, 1207-1210; 31.
- Aref Lazreg, H., Gaaliche, B., Fekih, A., Mars, M., Aouni, M., Pierre Chaumon, J. and Said, K., *In Situ, Ficus carica* Latex Inhibits cell - mediated immune responses and immunosuppressive behaviors. Analysis into the natural and organic ingredients, 2011; 25: 310-319.
- Avila, L., Perez, M., Sanchez-Duffhues, G., Hernández-Galán, R., Muñoz, E., Cabezas, F., Quiñones, W., Torres, F., and Echeverri, F., Results of *Euphorbia lacteal* and *Euphorbia laurifolia* phenylpropanoids through Latex on acquired immunodeficiency syndrome Form 1 peripheral neuropathy. Phytochemicals, 2010; 71: 243-248.
- 4. Bhandari, M.M., Flora of the Indian Thar Desert, MPS Repros. Jodhpur (Revised edition), 1990.
- 5. Chopra, H.S, Centre for American and West European Studies, 1982; 213(s): 380-381.
- Fennell, C.W., Lindsey, K.L., McGaw, L.J., Sparg, S.G., Stafford, G.I., Elgorashi, E.E., Grace, O.M., Van Staden, J., Evaluation of implementation and protection at African medicinal and aromatic plants: potential therapeutic evaluation and pharmacogenomics. Ethnopharmacology roles and responsibilities of different, 2004; 94: 205–217.
- Jain, S. K., Floral composition of Rajasthan- A review. Bull. Bot. Surv. India, 1963; 12: 176-187.
- 8. Jain, S.K., The genus Dipterygium Decne in India. Bull. bot. Surv. India, 1991; 2: 171.
- 9. Kaushik, P., and Dhiman, A.K., 2000. "India's Untreated Medicines and alternative medicine plant species, "Bishen Singh Mahendra Pal Singh, Dehradun.
- Kritikar., and Basu., Indian medicinal plants. 2nd ed. India, International Book Publishers, 1987; 86-87.
- 11. Nadkarnei., Association for Tropical Biology and Conservation, Mar, 1992; 24(1): 24-30.
- Pickard, W.F., Latiffers and hematopoietic tubules: system is usually Factory Tubing Structures. Latest Phytologe, 2008; 177: 877-888.
- Sharma, S., and Tiagi, B., Flora of north-east Rajasthan. Kalyani Publishers, New Delhi, 1979.
- 14. Sharma, N., The flora of Rajasthan. Aavishkar Publishers Distributors, Jaipur, 2002.
- 15. Thirumalai, T., Kelumalai, E., Senthilkumar, B., David, E., Phytochemical and pharmacological analysis of medicinal and aromatic plants used mostly by locals

throughout the District of Vellore, Tamilnadu, India. Resources ethnopharmacological, 2009; 13: 1302–1311.

16. Wintola, O.A., Afolayan, A.J., Traditional medicinal plants analysis of trees and shrubs used only for morning sickness care inside this municipalities of composed of two, South Africa. The south american regenerative medicine publication, 2010; 9(45): 7767–7770.