

Volume 8, Issue 4, 824-835.

Research Article

ISSN 2277-7105

A FACILE ONE-POT SYNTHESIS OF WEINREB AMIDES FROM CARBOXYLIC ACIDS WITH POCL₃

Ravi Lakkakula^{a,b}, Arnab Roy^a, Khagga Mukkanti^b and Mendu Narender*^a

^aGVK Biosciences Private Limited, Plot No. 28 A, IDA Nacharam, Hyderabad – 500076. ^bJawaharlal Nehru Technological University, Kukatpally, Hyderabad-500085, India.

Article Received on 29 Jan. 2019,

Revised on 19 Feb. 2019, Accepted on 12 March 2019

DOI: 10.20959/wjpr20194-14560

*Corresponding Author Mendu Narender

GVK Biosciences Private Limited, Plot No. 28 A, IDA Nacharam, Hyderabad -500076.

ABSTRACT

Conversion of carboxylic acids to Weinreb amides in one pot by using N,O-dimethyl hydroxylamine hydrochloride and phosphorus (V) oxychloride (POCl₃) in presence of Hunig's base in dichloromethane at room temperature in excellent yields. This method demonstrated for sterically hindered carboxylic acids and also various functional groups which are tolerated on the carboxylic acids.

KEYWORDS: Weinreb amides, Phosphorous oxychloride, Hunig's base.

INTRODUCTION

Weinreb amides were synthesised in 1981 by Nahm and Weinreb co-workers^[1,2]. Since then the *N*-methoxy-*N*-methylamides (Weinreb amides) were a highly versatile key intermediates for the preparation of aldehydes and ketones,^[3,4] and also used in the synthesis of natural products and biologically active substances.^[5-7] Several reagents were accessible for conversion of carboxylic acids to Weinreb amides such as 1,1'-carbonyldiimidazole,^[8] 1,3dicyclohexylcarbodiimide/1-hydroxybenzotriazole,^[9] oxalyl chloride,^[10] benzotriazol-1yloxytris(dimethylamino)phosphonium hexafluoro phosphate,^[11] triphenylphosphine/carbon tetrabromide,^[12] *O*-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate,^[13] 2pyridyl esters^[14] and 2-chloro-4,6-dimethoxy-[1,3,5] triazine^[15] and also were synthesized from *in situ* mixed phosphonic anhydrides, acid anhydrides, which was generated from the treatment of carboxylic acids with pivaloylchloride,^[16] alkyl chloroformates,^[17] propylphosphonic acid anhydride^[18] or diethyl phosphorocyanidate^[19] respectively, by subsequent addition of *N*,*O*-dimethyl hydroxylamine hydrochloride in the presence of base. However, some of these methods have drawbacks such as longer reaction time, commercially unavailable reagent or toxic, expensive reagents, high temperature, low yields, multi-step reactions and tedious work up procedures. To overcome these disadvantages, here we disclose a very convenient and efficient method for one pot synthesis of Weinreb amides from carboxylic acids by using POCl₃ as an acid activator as shown in Scheme 1.

Scheme 1.

Scheme 1: Synthesis of Weinreb amides from carboxylic acids with N,O-dimethyl hydroxylamine hydrochloride and phosphorus (V) oxychloride.

Here we have synthesized a series of Weinreb amides by treating the substituted carboxylic acids (**1a-t**) with *N*,*O*-dimethyl hydroxylamine hydrochloride (**2**) in presence of *N*,*N*-diisopropyl-*N*-ethyl amine (DIPEA) and POCl₃ in dichloromethane at room temperature for 2-3 hours to afford pure target Weinreb amides (**3a-t**).

MATERIALS AND METHODS

All the chemicals and reagents used for the synthesis, were obtained from commercial sources and were used without any further purification. Reactions were monitored by thin layer chromatography (TLC), performed on silica gel glass plates containing Merck TLC Silica Gel 60 F-254, and visualization on TLC was achieved by UV light or iodine indicator. ¹H NMR spectra were recorded in Agilent-400 MHz instrument. ¹³C NMR spectra were recorded in Agilent-100 MHz. Chemical shifts (δ) are reported in ppm downfield from TMS internal standard. ESI spectra were recorded on Micro mass, Quattro LC using ESI⁺ software with capillary voltage 3.98 kV and ESI mode positive ion trap detector. Melting points were determined with an electro thermal melting point apparatus (Buchi-M-565), and are uncorrected. The infra-red spectra were recorded as potassium bromide disk using Schimadzu-FT-IR spectrophotometer.

RESULTS AND DISCUSSION

We have optimized reaction conditions by using benzoic acid with $POCl_3$ (see Table 1), at room temperature. We have examined the effects of solvents on the reaction. Toluene and

DCM was used as the solvent. Observed progress of the reaction in toluene but the yield is lower than the DCM (Table 1, entry 1 and 2). Hence, we have chosen DCM as optimal solvent for this conversion and varied the mole ratio of phosphorus (V) oxy-chloride, Weinreb amine and DIPEA, had a great effect on the yields of products. However, it was found that the reaction provided the best result with 87% yield (Table 1, entry 6). It was observed that there is no effect on the reaction yield by increasing the equivalents of DIPEA (Table 1, entry 7). We have also performed a reaction by using free base of N,O-dimethyl hydroxylamine in the absence of DIPEA and observed no reaction (Table 1, entry 8). Thus, DIPEA was an effective base for trapping of the HCl, which is generating during the course of reaction.

Table 1: Optimization of the Reaction Conditions.

HO	~		Ö
	O	CH ₂ Cl ₂ , POCl ₃	
	+ _NH.HCI	DIPEA, rt, 2-3h	Î
1a	2		3a

Entry	1a (mmol)	POCl ₃ (mmol)	2 (mmol)	DIPEA (mmol)	Solvent ^a	Time (h)	Temp (°C)	Yield ^b (%)
1	4	4	4	8	toluene	16	25	45
2	4	4	4	8	CH_2Cl_2	10	25	60
3	4	4.4	4	8	CH_2Cl_2	8	25	65
4	4	4.4	4	10	CH_2Cl_2	6	25	69
5	4	4.4	4.8	10	CH_2Cl_2	4	25	77
6	4	4.4	4.8	12	CH_2Cl_2	2	25	87
7	4	4.4	4.8	16	CH_2Cl_2	2	25	87
8	4	4.4	12 ^c	0	CH_2Cl_2	16	25	-

^a All solvents were purified and dried by standard procedures.

^b Isolated yield after column chromatography.

^c NHMe(OMe) free amine was used instead of HCl salt.

To investigate the efficiency of this method, we have also tried different benzoic acids with electron-donating and electron withdrawing groups on the aryl ring (Table 2, entries 1-5). The electronic effects of the substituent's on the benzoic acids does not affect the reaction yield. A variety of Weinreb amides were synthesized from benzyl (Table 2, entries 6-7), hetero aromatic carboxylic acids (Table 2, entries 11-15) and aliphatic carboxylic acids (Table 2, entry 18). This methodology also applicable on a variety of carboxylic acids with

sensitive functional groups of *N*-protected amino acids (Table 2, entries 17-20) and observed high yields. In all cases, the formation of Weinreb amide was monitored by disappearance of the starting acid by TLC analysis. The reaction was completed in 2-3 hours at room temperature. The crude products were purified by short path silica gel column chromatography. The results are resumed in Table 2.

Table 2: Preparation of Weinreb Amides.

Entry	Acid (1a-1j)	Product (3a-j)	Time (h)	Yield (%) ^a	Entry	Acid (1k-t)	Product (3k-t)	Time (h)	¥ield (%)
1	O U 1a OH		2	87	11		N N N N N N N N N N N N N N N N N N N	3	87
2	ОН ПЬ	O N 3b	2	82	12	ОН		2	88
3	F-CO 1c OH		2	88	13			3	85
4	NC-		2	90	14	OH O In O	3m N-O	3	86
5	O ₂ N-CO 1e		_ 2	90	15	Br OH		2	90
6	HO 1f		2	92	16			2	92
7	ОН		2	89	17	Cbz-N_HOH		2	90
8	1g O O O O O O O O O O O O O O O O O O O		~ 2	88	18	O N H Ir O H		2	92
9	HO O OH		3	85	19	(S) NH 1s Fmoc	(S) NH 3s Fmoc	2	91
	1i 0	3i O			20 Fm	H SI N Boc	Fmoc ^{-H} ,(S)	oc 3	87
10	O 1j		2	85		о Н он ¹¹		-	

^a Isolated yield after column chromatography.

EXPERIMENTAL SECTION

General Procedure

N-Methoxy-*N*-methylbenzamide (3a): A solution of N,O-dimethyl hydroxylamine hydrochloride (0.96 g, 9.8 mmol) and benzoic acid (1 g, 8.2 mmol) was stirred in dichloro

methane (15 mL) at 0 °C for 5 min. Then DIPEA (3.18 g, 24.6 mmol) was added drop wise to the mixture at 0°C and followed by added POCl₃ (1.38 g, 9.01 mmol) drop wise at 0 °C. The resulted reaction mixture was allowed to r.t. and stirred for 2 h. On completion of the reaction (TLC monitoring), the mixture was cooled to 0 °C and was then quenched with sat. NaHCO₃ solution (80 mL), extracted with DCM (2×40 mL). The combined organic layer was dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure. The product was purified by column chromatography (silica gel, petroleum ether–EtOAc, 3:2) to afford pure **3a** as colorless oil; Yield: 1.18 g (87%).

The corresponding acids were converted in to weinreb amides using above general procedure (**3a-t**). The final structures of compounds were confirmed by ¹H NMR, ¹³C NMR, M.p, FT-IR, MS, and HRMS.

Spectral data for products (3a-3t)

N-Methoxy-*N*-methylbenzamide (3a)^[20]

Colorless oil; yield: 87%; ¹H NMR (300 MHz, CDCl₃) δ = 7.71 - 7.64 (m, 2H), 7.50 - 7.36 (m, 3H), 3.56 (s, 3H), 3.36 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ = 169.7, 133.9, 130.3, 127.9, 127.8, 60.8, 33.6. FT-IR (KBr): γ max3059, 2970, 2936, 1644, 1576, 1447, 1416, 1380, 1214 cm⁻¹.MS (ESI): (*m*/*z*) 166 [M+H]⁺, HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₁₂NO₂: 166.0790; found: 166.0860[M+H]+.

N-methoxy-N,2-dimethylbenzamide (3b)^[20]

Colorless oil; yield: 82%; ¹H NMR (300 MHz, CDCl₃) δ = 7.33 - 7.12 (m, 4H), 3.50 (br s, 3H), 3.27 (s, 3H), 2.32 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 172.6, 134.9, 134.4, 129.8, 128.8, 125.8, 125.1, 60.7, 32.8, 18.7. FT-IR (KBr): γ max3063, 2970, 2935, 2819, 1652, 1604, 1455, 1416, 1379, 1221, 1198, 1062, 986, 888, 772 cm–¹. MS (ESI): (m/z) 180 [M+H]⁺,HRMS (ESI): m/z [M + H]⁺calcd for C₁₀H₁₄NO₂: 180.0946; found: 180.1084.

4-fluoro-N-methoxy-N-methylbenzamide (3c)^[21]

Colorless oil; yield: 88%; ¹H NMR (300 MHz, CDCl₃) δ = 7.79 - 7.70 (m, 2H), 7.14 - 7.04 (m, 2H), 3.54 (s, 3H), 3.36 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 168.3, 165.3, 162.0, 130.5, 130.4, 129.7, 114.8, 114.5, 60.7, 33.2. FT-IR (KBr): γ max3070, 2971, 2937, 1644, 1605, 1507, 1419, 1379, 1292, 1225, 1158, 1064, 979, 848, 752 cm⁻¹. MS (ESI): (m/z) 184 [M+H]+,HRMS (ESI): m/z [M + H] +calcd for C₉H₁₁FNO₂: 184.0696; found: 184.0764.

4-cyano-N-methoxy-N-methylbenzamide (3d)^[20]

White solid; yield: 90%; mp 78-79°C.¹H NMR (400 MHz, CDCl₃) δ = 7.81 - 7.75 (m, 2H), 7.74 - 7.68 (m, 2H), 3.53 (s, 3H), 3.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 167.8, 138.2, 131.8, 128.8, 118.0, 114.0, 61.2, 33.1. FT-IR (KBr): γ max2974, 2938, 2819, 2230, 1651, 1560, 1506, 1421, 1461, 1383, 1215, 980cm–¹. MS (ESI): (m/z) 191 [M+H]+,HRMS (ESI): m/z [M + H]+ calcd for C₁₀H₁₁N₂O₂: 191.0776; found: 191.0809.

N-methoxy-*N*-methyl-4-nitrobenzamide (3e)^[20]

White solid; yield: 90%; mp 72-73°C.¹H NMR (400 MHz, CDCl₃) δ = 8.30 - 8.22 (m, 2H), 7.91 - 7.78 (m, 2H), 3.57 (s, 3H), 3.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 167.3, 148.4, 139.9, 128.8, 128.6, 122.8, 60.1, 32.8. FT-IR (KBr): γ max 3257, 3225, 3115, 2986, 2941, 1637, 1601, 1526, 1460. 1425, 1355, 1212, 976 cm–¹. MS (ESI): (m/z)211 [M+H]+,HRMS (ESI): m/z [M + H]+ calcd for C₉H₁₁N₂O₄: 211.0674; found: 211.0704.

N-methoxy-*N*-methyl-2-(p-tolyl) acetamide (3f)^[22]

Colorless oil; yield: 92%. ¹H NMR (400 MHz, CDCl₃) δ = 7.22 - 7.01 (m, 4H), 3.73 (s, 3H), 3.60 (s, 3H), 3.18 (s, 2H), 2.38 - 2.17 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 176.1, 136.7, 136.3, 131.7, 130.6, 129.3, 128.1, 61.5, 40.7, 38.9, 32.3, 21.0. FT-IR (KBr): γ max3087, 3004, 2970, 2933, 1728, 1660, 1515, 1438, 1438, 1383, 1172, 1006cm–¹. MS (ESI): (m/z) 194 [M+H]+,HRMS (ESI): m/z [M + H] +calcd for C₁₁H₁₆NO₂: 194.1103; found: 194.1171.

N-methoxy-2-(3-methoxyphenyl)-*N*-methylacetamide (3g)^[23]

Light yellow oil; yield: 89%.¹H NMR (400 MHz, CDCl₃) δ = 7.28 - 7.19 (m, 1H), 6.91 - 6.84 (m, 2H), 6.82 - 6.76 (m, 1H), 3.79 (s, 3H), 3.75 (s, 2H), 3.61 (s, 3H), 3.19 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 172.1, 159.5, 136.2, 129.2, 121.5, 114.7, 112.2, 61.1, 60.2, 55.0, 39.2, 32.1, 20.8. FT-IR (KBr): γ max3496, 2939, 2836, 1660, 1599, 1490, 1382, 1259, 1150, 1048, 937 cm⁻¹. MS (ESI): (m/z)210 [M+H]+,HRMS (ESI): m/z [M + H] +calcd for C₁₁H₁₆NO₃: 210.1052; found: 210.1115.

N-methoxy-*N*-methyl-2-phenoxyacetamide (3h)^[24]

Light yellow oil; yield: 88%.¹H NMR (400 MHz, CDCl₃) δ = 7.33 - 7.21 (m, 2H), 7.02 - 6.86 (m, 3H), 4.81 (s, 2H), 3.76 (s, 3H), 3.24 (s, 3H). FT-IR (KBr): γ max3504, 2939, 1683, 1955, 1588, 1495, 1440, 1392, 1224, 1176, 1063, 988 cm–¹. ¹³C NMR (75 MHz, CDCl₃) δ = 169.1, 157.9, 129.2, 121.2, 114.3, 65.2, 61.3, 32.1.MS (ESI): (m/z)196 [M+H]+,HRMS (ESI): m/z [M + H] +calcd for C₁₀H₁₄NO₃: 196.0895; found: 196.0958.

N^1, N^3 -dimethoxy- N^1, N^3 -dimethylisophthalamide (3i)^[20]

White solid; yield: 85%; mp 42-43°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.01$ (s, 1H), 7.78 (dd, J = 1.7, 7.6 Hz, 2H), 7.46 (t, J = 7.8 Hz, 1H), 3.55 (s, 6H), 3.37 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 168.6$, 133.5, 130.0, 127.7, 127.6, 60.8, 33.3. FT-IR (KBr): γ max3449, 2934, 1643, 1416, 1379, 1260, 1275, 1175, 978 cm–¹. MS (ESI): (m/z)253 [M+H]+,HRMS (ESI): m/z [M + H]+ calcd for C₁₂H₁₇N₂O₄: 253.1110; found: 253.1176.

N-methoxy-*N*-methylcinnamamide (3j)^[25]

Light yellow oil; yield: 85%.¹H NMR (400 MHz, CDCl₃) δ = 7.74 (d, J = 15.7 Hz, 1H), 7.57 (dd, J = 1.5, 7.3 Hz, 2H), 7.42 - 7.33 (m, 3H), 7.04 (d, J = 15.7 Hz, 1H), 3.77 (s, 3H), 3.31 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ = 166.7, 143.2, 134.9, 129.6, 128.5, 127.7, 115.5, 61.6, 32.2. FT-IR (KBr): γ max3489, 3060, 3027, 2967, 2937, 2819, 1706, 1655, 1618, 1578, 1497, 1450, 1415, 1381, 1261, 1178, 1098, 997, 762 cm–¹. MS (ESI): (m/z)192 [M+H]+,HRMS (ESI): m/z [M + H]+ calcd for C₁₁H₁₄NO₂: 192.0946; found: 192.1010.

N-methoxy-*N*-methyl nicotinamide (3k)^[26]

Light yellow oil; yield: 87%. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.96$ (d, J = 1.5 Hz, 1H), 8.69 (dd, J = 1.5, 4.9 Hz, 1H), 8.03 (td, J = 1.9, 7.9 Hz, 1H), 7.36 (dd, J = 4.9, 7.8 Hz, 1H), 3.56 (s, 3H), 3.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 166.9$, 150.8, 148.7, 135.6, 129.4, 122.6, 60.8, 32.7. FT-IR (KBr): γ max 3483, 2971, 2936, 1644, 1590, 1414, 1384, 1260, 1223, 1071, 978, 821 cm⁻¹. MS (ESI): (m/z) 167 [M+H]+, HRMS (ESI): m/z [M + H] +calcd for C₈H₁₁N₂O₂: 167.0742; found: 167.0815.

N-methoxy-N-methyl quinoxaline-2-carboxamide (31)^{new}

Light yellow oil; yield: 88%.¹H NMR (400 MHz, CDCl₃) $\delta = 9.12$ (br s, 1H), 8.23 - 8.08 (m, 2H), 7.94 - 7.76 (m, 2H), 3.81 (br s, 3H), 3.48 (br s, 3H).¹³C NMR (75 MHz, CDCl₃) $\delta = 144.0$, 142.6, 140.8, 131.0, 130.5, 129.7, 129.2, 61.8, 32.7. FT-IR (KBr): γ max 3459, 2981, 2933, 1654, 1478, 1386, 1262, 1066, 968, 750 cm–¹. MS (ESI): (m/z)218 [M+H]+,HRMS (ESI): m/z [M + H] + calcd for C₁₁H₁₁N₃O₂: 218.0851; found: 218.0920.

N-methoxy-N-methyl imidazo[1,2-a]pyrimidine-2-carboxamide (3m)^{new}

Yellow solid; yield: 85%; mp 91-93°C.¹H NMR (300 MHz, DMSO-d₆) δ = 9.79 (br d, J = 6.2 Hz, 1H), 8.74 (br d, J = 1.8 Hz, 1H), 8.43 (s, 1H), 7.29 (dd, J = 4.2, 6.8 Hz, 1H), 3.79 (s, 3H), 3.29 (s, 3H).¹³C NMR (75 MHz, DMSO-d₆) δ = 159.7, 152.5, 149.5, 141.2, 136.5, 114.6, 110.4, 61.0, 32.3.FT-IR (KBr): γ max3196, 3154, 3133, 2986, 2925, 1783, 1599, 1620, 1516,

1268, 1290, 1178, 1029, 968, 896, 866, 814, 781, 734 cm⁻¹.MS (ESI): (m/z)207 [M+H]+,HRMS (ESI): m/z [M + H] + calcd for $C_9H_{11}N_4O_2$: 207.0804; found: 207.0871.

N-methoxy-*N*,3-dimethylbenzofuran-2-carboxamide (3n)^[27]

Light yellow solid; yield: 86%; mp 71-72°C.¹H NMR (300 MHz, CDCl₃) δ = 7.58 (d, J = 8.0 Hz, 1H), 7.49 - 7.42 (m, 1H), 7.41 - 7.34 (m, 1H), 7.30 - 7.22 (m, 1H), 3.84 (s, 3H), 3.36 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ = 161.8, 153.5, 142.6, 128.7, 126.5, 123.1, 122.6, 120.3, 111.4, 61.6, 33.9, 8.9. FT-IR (KBr): γ max3061, 2976, 2934, 2818, 1646, 1596, 1448, 1377, 1337, 1250, 1206, 1125, 989, 874, 791, 745 cm–¹. MS (ESI): (m/z)220 [M+H]+,HRMS (ESI): m/z [M + H] + calcd for C₁₂H₁₄NO₃: 220.0895; found: 220.0964.

3-bromo-*N***-methoxy-***N***-methylthiophene-2-carboxamide** (**30**)^[28]

Yellow oil; yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ = 7.42 (d, J = 4.9 Hz, 1H), 7.06 (d, J = 5.4 Hz, 1H), 3.70 (s, 3H), 3.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.4, 131.2, 129.3, 126.8, 115.2, 61.4, 33.3. FT-IR (KBr): γ max 3104, 2974, 2935, 2817, 1644, 1634, 1495, 1372, 1275, 1201, 1185, 1050, 979, 871, 804 cm⁻¹. MS (ESI): (m/z)249.9 [M+H]+,HRMS (ESI): m/z [M + H]+ calcd for C₇H₉BrNO₂S: 249.9459; found: 249.9519.

N-methoxy-*N*-methylcyclohexanecarboxamide (3p)^[20]

Colorless oil; yield: 92%. ¹H NMR (300 MHz, CDCl₃) δ = 3.70 (s, 3H), 3.17 (s, 3H), 2.68 (br t, J = 11.3 Hz, 1H), 1.86 - 1.64 (m, 5H), 1.58 - 1.40 (m, 2H), 1.38 - 1.17 (m, 3H).¹³C NMR (75 MHz, CDCl₃) δ = 177.1, 61.2, 39.7, 32.0, 29.4, 28.7, 25.5. FT-IR (KBr): γ max2855, 2932, 1660, 1451, 1275, 994, 764, 749 cm⁻¹. MS (ESI): (m/z)172 [M+H]+,HRMS (ESI): m/z [M + H] + calcd for C₉H₁₈NO₂: 172.1259; found: 172.1327.

Benzyl 4-(methoxy (methyl) carbamoyl) piperidine-1-carboxylate (3q)^[29]

Light yellow oil; yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ = 7.39 - 7.29 (m, 5H), 5.13 (s, 2H), 4.28 - 4.17 (m, 2H), 3.71 (s, 3H), 3.18 (s, 3H), 2.93 - 2.79 (m, 3H), 1.79 - 1.65 (m, 4H).¹³C NMR (75 MHz, CDCl₃) δ = 175.2, 155.0, 136.6, 128.3, 127.7, 127.6, 66.9, 61.4, 43.0, 43.2, 37.7, 32.1, 29.5, 27.7. FT-IR (KBr): γ max2937, 2890, 1698, 1660, 1429, 1354, 1275, 1225, 1131, 991, 750, 699cm–¹. MS (ESI): (m/z)307 [M+H]+,HRMS (ESI): m/z [M + H] + calcd for C₁₆H₂₃N₂O₄: 307.1580; found: 307.1635.

Tert-butyl (R)-(1-(methoxy(methyl) amino)-1-oxopropan-2-yl) carbamate (3r)^[30]

White solid; yield:92%; mp 65-68°C.¹H NMR (400 MHz, CDCl₃) δ = 5.30 (br d, J = 6.4 Hz, 1H), 4.68 (br s, 1H), 3.77 (s, 3H), 3.21 (s, 3H), 1.44 (s, 9H), 1.31 (d, J = 6.8 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 173.6, 155.1, 61.5, 54.8, 46.5, 42.9, 38.5, 32.1, 28.5, 28.3, 28.1, 18.6, 12.4. FT-IR (KBr): γ max 3297, 3049, 3006, 2980, 2937, 2914, 2821, 1708, 1661, 1542, 1454, 1389, 1366, 1297, 1253, 1183, 1121, 1066, 980, 865, 756 cm–¹. MS (ESI): (m/z) 234 [M+H]+.

(9H-fluoren-9-yl)methyl (S)-(1-(methoxy(methyl)amino)-1-oxo-3-phenylpropan-2yl)carbamate (3s)^[31]

White solid; yield: 91%; mp 132-133°C. ¹H NMR (400 MHz, CDCl₃) δ = 7.74 (d, J = 7.3 Hz, 2H), 7.55 (br t, J = 8.3 Hz, 2H), 7.38 (t, J = 7.3 Hz, 2H), 7.32 - 7.21 (m, 5H), 7.17 (br d, J = 7.3 Hz, 2H), 5.66 (br d, J = 8.8 Hz, 1H), 5.03 (br d, J = 6.8 Hz, 1H), 4.36 (br dd, J = 7.3, 10.3 Hz, 1H), 4.30 - 4.21 (m, 1H), 4.21 - 4.13 (m, 1H), 3.66 (s, 3H), 3.44 (s, 1H), 3.22 (s, 3H), 3.24 - 3.07 (m, 1H), 2.94 (br dd, J = 7.3, 13.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 171.8, 155.7, 143.7, 141.1, 136.2, 129.3, 128.3, 127.5, 126.9, 126.8, 125.1, 125.0, 119.8, 66.8, 61.4, 51.9, 50.6, 47.0, 38.5, 31.9. FT-IR (KBr): γmax3299, 3062, 3028, 2939, 1719, 1656, 1449, 1390, 1248, 1043, 986, 740 cm⁻¹. MS (ESI): (m/z)431 [M+H]+,HRMS (ESI): m/z [M + H] + calcd for C₂₆H₂₇N₂O₄: 431.1893; found: 431.1958.

(9H-fluoren-9-yl) methyl tert-butyl (6-(methoxy (methyl) amino)-6-oxohexane-1,5diyl)(S)-dicarbamate (3t)^[31]

White solid; yield: 87%; mp 123-125°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.76 (br d, J = 7.3 Hz, 2H), 7.68 - 7.56 (m, 2H), 7.46 - 7.24 (m, 5H), 5.58 (br d, J = 8.8 Hz, 1H), 4.81 - 4.51 (m, 2H), 4.37 (br d, J = 6.9 Hz, 2H), 4.28 - 4.17 (m, 1H), 3.77 (s, 3H), 3.22 (s, 3H), 3.11 (br d, J = 5.1 Hz, 2H), 1.85 - 1.70 (m, 2H), 1.67 - 1.32 (m, 14H), 0.99 - 0.78 (m, 2H).¹³C NMR (75 MHz, CDCl₃) δ = 172.6, 156.1, 155.9, 143.9, 143.7, 141.2, 128.0, 127.6, 127.0, 125.1, 119.9, 79.0, 66.9, 61.6, 50.6, 47.1, 40.2, 32.4, 32.0, 29.6, 29.5, 28.3, 22.4. FT-IR (KBr): γ max3329, 2930, 2861, 1712, 1519, 1451, 1366, 1250, 1172, 990, 759, 743cm–¹. MS (ESI): (m/z)512 [M+H]+,HRMS (ESI): m/z [M + H] + calcd for C₂₈H₃₈N₃O₆: 512.2682; found: 512.2749.

CONCLUSION

In summary, we have developed a practical and scalable one pot procedure for the conversion of various carboxylic acids to their corresponding Weinreb amides using POCl₃ as an acid activator. The current procedure described here offers high yields of products, the reaction

was also applicable to the preparation of α -amino Weinreb amides and proceeded without deprotection of the N-Boc and N-Fmoc protecting groups, and high resistance to racemization, short reaction time, and operational simplicity.

ACKNOWLEDGMENTS

The authors are thankful to GVK Biosciences Private Limited for financial and analytical support.

REFERENCES

- 1. Nahm, S.; Weinreb, S.M. N-methoxy-n-methylamides as effective acylating agents*Tetrahedron Lett.*, 1981; 22: 3815-3818.
- Sibi, M.P. Chemistry of n-methoxy-n-methylamides. Applications in synthesis. Org. Prep. Proced. Int., 1993; 25: 15-40.
- Singh, J.; Satyamurthi, N.; Aidhen, I. S. Synthesis of ω-Hydroxy Ketones from ω-Benzyloxy Weinreb Amides. J. Prakt. Chem., 2000; 342: 340-347.
- Mentzel, M.; Hoffmann H. M. R. N-methoxy-N-methyl amides in Modern Organic Synthesis. J. Prakt. Chem., 1997; 339: 517-524.
- Dias, L. C.; Sousa, M. A. Synthetic studies directed toward the total synthesis of dolabriferol. *Tetrahedron Lett.*, 2003; 44: 5625-5628.
- 6. Shimizu T., Kusada J., Ishiyama H., Nakata T. Efficient Synthesis of the 6,6-spiroacetal of spirofungin A. *Tetrahedron Lett.*, 2003; *44*: 4965-4968.
- Suh, Y.; Jung, J.;Seo, S.; Min, K.; Shin, D.; Lee, Y.; Kim, S.; Park, H. Total Synthesis of (+)-Brefeldin A. J. Org. Chem., 2002; 67: 4127-4137.
- Poss, M. A.; Reid, J. A. Synthesis of the hydroxyethylene dipeptide isostere, (2S,4S,5S)-)-5-amino-6-cyclohexyl-4-hydroxy-2-isopropylhexanoic acid n-butyl amide. *Tetrahedron Lett.*, 1992; 33: 1411-1414.
- Brenner-Weiβ, G.; Giannis, A.; Sandhoff, K. Synthesis of potential inhibitors of the glycosphingolipid biosynthesis. *Tetrahedron*, 1992; 48: 5855-5860.
- Davies, D. T.; O'Hanlon, P. J. A New Synthesis of N-Protected α-Aminomethyl Ketones from Glycine. *Synth. Comm.*, 1988; 18: 2273-2280.
- D'Aniello, F.; Mann, A. 1,3-Stereocontrol with Bromoallenes. Synthesis of N-Boc-ADDA, the Unique Amino Acid Present in Several Inhibitors of Serine/Threonine Phosphatases. J. Org. Chem., 1996; 61: 4870-4871.

- Einhorn, J.; Einhorn, C.; Luche, J. L. A Convenient Method for the Preparation of N-Methoxyamides. *Synth. Comm.*, 1990; 20: 1105-1112.
- 13. Wen, J. J.; Crews, C. M. Synthesis of 9-fluorenylmethoxycarbonyl-protected amino aldehydes. *Tetrahedron: Asymmetry*, 1998; 9: 1855-1858.
- Geffken, D.; Haerting, M. An Improved Synthesis of N-Alkoxy-α-Oxo-Arylacetamides. Synth. Comm., 1996; 26: 4153-4156.
- 15. Luca, L. D.; Giacomelli, G.; Taddei, M. An Easy and Convenient Synthesis of Weinreb Amides and Hydroxamates. *J. Org. Chem.*, 2001; 66: 2534-2537.
- Raghuram, T.; Vijaysaradhi, S.; Singh, I.; Singh, J. Convenient Conversion of Acid toWeinreb's Amide Synth. Comm., 1999; 29: 3215-3219.
- Angelastro, M. R.; Peet, N. P.; Bey, P. An efficient synthesis of novel .alpha.-diketone and .alpha.-keto ester derivatives of N-protected amino acids and peptides *J. Org. Chem.*, 1989; 54: 3913-3916.
- 18. Dechantsreiter, M. A.; Burkhart, F.; Kessler, H. A stereoselctive synthesis of a C-glycosylated peptoid building block. *Tetrahedron Lett.*, 1998; 39: 253-254.
- 19. Irako, N.; Hamada, Y.; Shioiri, T. A new efficient synthesis of (S)-dolaphenine ((S)2- phenyl -1-(2-thiazolyl)ethylamine), the C-terminal unit of dolastatin 10. *Tetrahedron*, 1992; 48: 7251-7264.
- Niu, T.; Wang, K.A.; Huang, D.; Xu, C.; Su, Y.; Hu, Y.; Fu, Y. One-Pot Transition -Metal-Free Synthesis of Weinreb Amides Directly from Carboxylic Acids. *Synthesis*, 2014; 46: 320–330.
- 21. Das, R.; Kapur, M. Palladium-Catalyzed, ortho-selective C-H Halogenation of Benzyl Nitriles, Aryl Weinreb Amides, and Anilides. *J. Org. Chem.*, 2017; 82(2): 1114-1126.
- 22. Watson R.B.; Schindler, C.S. Iron-Catalyzed Synthesis of Tetrahydronaphthalenes via 3,4-Dihydro-2*H* pyran Intermediates.*Org. Lett.*, 2018; 20(1): 68–71.
- 23. Wang, H.; Denton. J.R.; Davies. Huw M. L. Sequential Rhodium-, Silver- and Gold-Catalyzed Synthesis of Fused Dihydrofurans. *Org. Lett.*, 2011; 13(16): 4316–4319.
- 24. Zhan. Gu.; He. Q.; Yuan. X.; Chen. Y.C. Asymmetric Direct Vinylogous Michael Additions of Allyl Alkyl Ketones to Maleimides through Dienamine Catalysis. Org. Lett., 2014; 16(22): 6000–6003.
- 25. Banwell, M.; Smith, J. A mild one-pot method for the conversion of carboxylic acids into the corresponding weinreb amides *Synth. Comm.*, 2001; 31(13): 2011-2019.
- 26. Han, K.-J.; Kim, M. Direct Synthesis of Weinreb Amides from Carboxylic acids UsingTriphosgene. *Letters in organic chemistry*, 2007; 4(1): 20-22.

- 27. Yoshihiro, B.; Ryoma, H.; Ryosuke, T. Preparation of (heterocyclylmethyl) amine compounds as glucagon receptor antagonists. PCT Int. Appl., 2009110520, 11 Sep 2009.
- 28. Jurcak, John Gerard, Barrague, Matthieu, Gillespy, Alan, T.; Edwards, Louis, M.; Musick, Yon, K.; Weintraub, Marvin, P.; Du, Yan, Dharanipragada, Ramalinga M.; Parkar, Ahmed, A. Preparation of thienopyrazoles as inhibitors of interleukin-2 inducible tyrosine kinase for treating diseases involving overproduction of Th2 cytokine like asthma. PCT Int. Appl., 2005026175, 24 Mar 2005.
- 29. Estevez, V.; Kloeters, L.; Kwletnlewska, N.; Garcia E.V-.; Ruljter, E.; Orru, R.V.A. Ugi-Type Reactions of Spirocyclic Indolenines as a Platform for Compound Library Generation. *Synlett*, 2017; 28: 376-380
- Soroka, A.; Vander Veken, P.; De Meester, I.; Lambeir, A-M.; Maes, M-B.; Scharpe, S.; Haemers, A.; Augustyns, K. Synthesis and dipeptidyl peptidase inhibition of N-(4substituted-2,4-diaminobutanoyl)piperidines. *Bioorganic Med. Chem. Lett.*, 2006; 16(18): 4777-4779.
- Sharnabai, K.M.; Nagendra, G.; Vishwanatha, T.M.; Sureshbabu, V.V. Efficient synthesis of N-protected amino/peptide Weinreb amides from T₃P and DBU. *Tetrahedron Lett*, 2013; 54(6): 478-482.