

Volume 7, Issue 9, 1641-1649.

Research Article

ISSN 2277-7105

MW ASSISTED SYNTHESIS AND BIOLOGICAL PREDICTION STUDY OF SOME NEW PYRAZOLE-4-CARBONITRILE DERIVATIVES USING MALONONITRILE

Savita Dhongade-Desai*, Poonam K. Shetake, Vitthal A. Divate and Reshma P. Khot

India.

Article Received on 19 March 2018,

Revised on 09 April 2018, Accepted on 30 April 2018, DOI: 10.20959/wjpr20189-12198

*Corresponding Author Savita Dhongade-Desai India.

ABSTRACT

The different pyrazole-4-carbonitrile derivatives were synthesised by the reaction between thiophene-2-aldehyde (1 mmol) and malononitrile (1 mmol) under microwave irradiations at low power (210 W) with a catalytic amount of alcoholic sodium ethoxide followed by addition of phenyl hydrazine (1 mmol). The synthesized compounds were characterized by ¹H NMR, ¹³C NMR, IR, and Mass spectra. The biological activity of some new synthesized compounds was evaluated by PASS prediction and appeared to be significant.

KEYWORDS: Pyrazole-4-carbonitrile, Heterocyclic aldehyde, microwave irradiations.

INTRODUCTION

Heterocyclic compounds with nitrogen atoms have received a great importance as bioremedial agents. Among the five membered heterocycles, the pyrazole and its carbonitrile derivatives have provided inormous functionality and stereochemical complexity. In the history, studies have reported a growing body of data on different pyrazole derivatives and their innumerable physiological and pharmacological activities. Such reports have exhibited the several biological medicinal properties of derivatives of pyrazole and established the relation between the structure and activities so that the full potential of the moieties can be exploited. Considering the recent advances in synthetic medicinal chemistry, with the aim of discovering new drug molecules, we have attempted to synthesis new pyrazole-4-carbonitrile derivatives have been found to possess biological activities such as antimicrobial^[1,2], P-38 α MAP kinase

inhibitory^[3], insecticidal^[4,5], diuretic^[6], anticancer^[7], antibiotic^[8], cardio–vascular^[9,10], antiinfective^[11], monoamine oxidase inhibitory^[12], antioxidant^[13] and anti-HIV^[14].

MATERIALS AND METHODS

All chemicals used were commercially available and purchased from Acros organics. All the melting points checked in an open capillary method and are uncorrected. The reactions were monitored by thin layer chromatography (TLC) using precoated chromatoplates. The spots are visualized under ultraviolet tube. Proton nuclear magnetic resonance (¹H NMR) and ¹³C NMR spectra were recorded on a Bruker DPX 300 MHz spectrophotometer using tetramethylsilane (TMS) as an internal standard in DMSO- d_6 . Infrared spectra were recorded on a Perkin-Elmer, JASCO 4600 FTIR spectrophotometer and expressed in cm⁻¹.

General procedure for the synthesis of pyrazole-4-carbonitriles [V(a-e)]

In a 50 ml clean round bottomed flask, heterocyclic aldehyde (1 mmol) and malononitrile (1 mmol) were irradiated with microwaves at 30 % power (210 W) with catalytic amount of alcoholic sodium ethoxide to form heteroarylidine malononitriles [III(a-e)] which on further condensation with phenyl hydrazine (1 mmol) produced pyrazole-4-carbonitrile derivatives under MWI at same power till the completion of reaction as monitored by TLC. The crude product was filtered off, washed with water. The solid was dried and recrystallized from absolute ethanol to obtain desired product in purest form.

 Table 1: General characteristics and elemental analysis data of the compounds [III (a-e)-IV (a-e)].

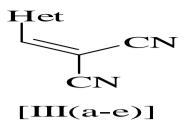
	Time (sec)	Yield	MP ⁰ C	Molecular	Elemental Analysis													
Com				Formula	% of C		% of H		%	o of N								
				(M.F.)	Found	Calcd	Found	Calcd	Found	Calcd								
IIIa	20	91	116	$C_8H_4N_2S$	59.96	59.98	2.59%	2.52%	17.52%	17.49%								
IIIa	20	91	110	(160.20)	%	%	2.39%	2.32%	17.3270	17.49%								
IIIb	35	82	105	$C_8H_4N_2O$	66.58	66.67	2.82%	2.80%	19.52%	19.44%								
1110	55	02	105	(144.13)	%	%				19.4470								
IIIc	25	92	128	$C_{11}H_6N_2O_2$	66.62	66.67	3.02%	3.05%	14.24%	14.14%								
IIIc				(198.18)	%	%												
IIId	30	84	122	$C_8H_3ClN_2S$	49.29	49.37	1.59%	1.55%	17.42%	14.39%								
IIIu	50	04	122	(194.64)	%	%	1.3970	1.5570	17.4270	14.3970								
IIIe	45	80	80	80	80	80	80	80	80	80	118	C8H ₃ ClN ₂ O	53.76	53.81	1.59%	1.69%	15.82%	15.69%
me	43		110	(178.58)	%	%	1.5770	1.07/0	15.6270	15.0770								
			142	$C_{14}H_{10}N_4S$	63.11	63.14												
Va	150		(140-	(266.33)	%	03.14 %	3.79%	3.78%	21.10%	21.04%								
			$(141)^{38}$	(200.33)	70	70												
Vb	170	85	135	$C_{14}H_{10}N_4O$	67.16	67.19	4.10%	4.03%	22.37%	22.39%								

www.wjpr.net

World Journal of Pharmaceutical Research

Savita *et al*.

				(250.26)	%	%				
Vc	155	91	148	$C_{17}H_{12}N_4O_2$ (304.31)	67.04 %	67.10 %	3.95%	3.97%	18.52%	18.41%
Vd	160	86	130	C ₁₄ H ₉ ClN ₄ S (300.77)	55.86 %	55.91 %	3.09%	3.02%	18.65%	18.63%
Ve	185	82	138	C ₁₄ H ₉ ClN ₄ O (284.71)	59.01 %	59.06 %	3.22%	3.19%	19.75%	19.68%


Spectral data of the synthesised compounds

Comp.	Structure	Spectral data				
		IR (KBr) v _{max} : 3100.97, 3022.87, 2221.59, 1670.11,				
IIIa	NC	$1570.74, 1404.89, 1318.11 \text{ cm}^{-1}$				
		¹ H NMR (CDCl ₃ , 300 MHz): δ 7.26-7.28 (t, 1H, Ar-				
		H), 7.80-7.81(d, 1H, Ar-H), 7.87-7.89 (d, 2H, Ar-H)				
		ppm				
	~	¹³ C NMR (CDCl ₃ , 75 MHz):δ 78.37, 112.96,				
		113.80, 129.05, 135.43, 136.92, 138.18, 151.12 ppm				
		IR (KBr) v _{max} : 3123.15, 3038.3, 2224.49, 1748.16,				
	NÇ	1604.48, 1455.99, 1230.36 cm ⁻¹				
IIIb		¹ H NMR (CDCl ₃ , 300 MHz): δ 6.56 (s, 1H, -CH),				
1110	CN CN	7.30-7.98 (d, 1H, Ar-H), 8.01 (m, 2H, Ar-H) ppm				
	0	¹³ C NMR (CDCl ₃ , 75 MHz): δ 74.58, 126.48,				
		129.15, 132.06, 138.58, 139.30, 156.74 ppm				
		IR (KBr) v_{max} : 3697.84, 3595.63, 2392.26, 2216.7,				
		1606.41, 1494.56 cm ⁻¹				
	0 CN	¹ H NMR (CDCl ₃ , 300 MHz): δ 6.14 (s, 2H, CH ₂),				
IIIc		6.93-6.96 (s, 1H, -CH), 7.32-7.35 (m, 2H, Ar-H),				
	O CN	7.61-7.62 (d, 2H, Ar-H) ppm ¹³ C NMR (CDCl ₃ , 75 MHz): δ 79.26, 102.67,				
		108.26, 109.15, 113.07, 114.23, 125.61, 130.01,				
		149.01, 153.45, 158.70 ppm				
		IR (KBr) v _{max} : 3697.84, 3595.63, 2392.26, 2216.7,				
		$1606.41, 1494.56 \text{ cm}^{-1}$				
		¹ H NMR (CDCl ₃ , 300 MHz): δ 6.76-6.78 (s, 1H, -				
IIId	CN	CH), 7.80-7.81 (d, 1H, Ar-H), 7.87-7.89 (d, 1H, Ar-				
		H) ppm				
	5	¹³ C NMR (CDCl ₃ , 75 MHz): δ 78.77, 112.69,				
		113.74, 128.95, 135.44, 137.12, 138.08, 150.99 ppm				
		IR (KBr) v _{max} : 3617.11, 3505.13, 2381.16, 2202.21,				
	NÇ	$1676.31, 1454.50 \text{ cm}^{-1}$				
		¹ H NMR (CDCl ₃ , 300 MHz): δ 6.48-6.55 (s ,1H, -				
IIIe	CN	CH), 6.72-6.86 (d, 1H, Ar-H), 7.86 (d, 1H, Ar-H)				
		ppm				
		¹³ C NMR (CDCl ₃ , 75 MHz): δ 77.39, 108.76,				
		113.41, 114.12, 116.01, 125.08, 139.31, 151.59 ppm				
		IR (KBr) \mathbf{v}_{max} : 3416.28, 3303.46, 2357.56, 2200.02, 1688.37, 1511.92, 1358.6 cm ⁻¹				
IVa	NH ₂	¹ H NMR (CDCl ₃ , 300 MHz): δ 6.27-6.91 (s, 2H, -				
	N-	H NMR (CDC13, 500 MHZ): 0 0.27-0.91 (8, 2H, - NH ₂), 7.01-7.02 (m, 1H, Ar-H), 7.03-7.11 (m, 4H,				
	N CN	1112), 7.01-7.02 (iii, 111, Al-11), 7.03-7.11 (iii, 4ft,				
www.wjr	www.wjpr.net s Vol 7, Issue 9, 2018. 1643					

		ArH), 7.26-7.29 (m, 3H, Ar-H) ppm
		¹³ C NMR (CDCl ₃ , 75 MHz): δ 72.15, 112.79, 115.5,
		123.5, 125.89, 126.37, 127.17, 129.28, 132.15,
		140.46, 144.41, 150.9 ppm
	\square	IR (KBr) v _{max} : 3397.78, 3311.26, 3112.58, 2357.57,
		$2231.24, 1668.27, 1519.42, 1342.56 \text{ cm}^{-1}$
	NH ₂	¹ H NMR (CDCl ₃ , 300 MHz): δ 6.51-6.95 (s, 2H, -
IVb	N N	NH ₂), 7.00-7.04 (m, 1H, Ar-H), 7.05-7.11 (m, 4H,
100	N CN	Ar-H), 7.16-7.19 (m, 3H, Ar-H) ppm
		¹³ C NMR (CDCl ₃ , 75 MHz): δ 72.51, 111.84,
	Q >>	112.05, 115.55, 123.53, 124.72, 129.20, 138.36,
	\/	144.67, 150.75,151.04, 153.86 ppm
		IR (KBr) v_{max} : 3435.23, 3215.46, 3120.25, 2207.26,
	NH ₂	$1670.85, 1349.68 \text{ cm}^{-1}$
	N	¹ H NMR (CDCl ₃ , 300 MHz): δ 6.14 (s, 2H, -CH ₂),
		6.93-6.96 (s, 2H, -NH ₂), 7.32-7.36 (m, 3H, Ar-H),
IVc	Ϋ́Υ	7.61-7.62 (m, 5H, Ar-H) ppm
		¹³ C NMR (CDCl ₃ , 75 MHz): δ 72.50, 100.14,
		107.66, 108.27, 109.14, 123.51, 125.62, 129.98,
		132.64, 138.33, 147.93, 149.01, 152.90, 158.68 ppm
	0-	ID (\mathbf{VD}_{r}) = 2416.29, 2202.46, 2257.56, 2200.02
		IR (KBr) v_{max} : 3416.28, 3303.46, 2357.56, 2200.02, 1688 27, 1511.02, 1258 6 cm ⁻¹
	NH ₂	1688.37, 1511.92, 1358.6 cm ⁻¹
	N-	1688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, -
IVd	NH ₂ N N CN	1688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, - NH ₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H,
IVd	N-	1688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, - NH ₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm
IVd	N-	^{1688.37, 1511.92, 1358.6 cm⁻¹ ¹H NMR (CDCl₃, 300 MHz): δ 6.80-7.01 (s, 2H, - NH₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm ¹³C NMR (CDCl₃, 75 MHz): δ 72.05, 112.46,}
IVd	N-	1688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, - NH ₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm
IVd		1688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, - NH ₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm ¹³ C NMR (CDCl ₃ , 75 MHz): δ 72.05, 112.46, 115.55, 123.05,125.37, 126.89, 127.09, 129.41, 137.15, 139.41, 145.60, 150.70 ppm
IVd		1688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, - NH ₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm ¹³ C NMR (CDCl ₃ , 75 MHz): δ 72.05, 112.46, 115.55, 123.05,125.37, 126.89, 127.09, 129.41, 137.15, 139.41, 145.60, 150.70 ppm IR (KBr) v _{max} : 3411.68, 3296.21, 3114.48, 2413.47,
IVd		1688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, - NH ₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm ¹³ C NMR (CDCl ₃ , 75 MHz): δ 72.05, 112.46, 115.55, 123.05,125.37, 126.89, 127.09, 129.41, 137.15, 139.41, 145.60, 150.70 ppm IR (KBr) v _{max} : 3411.68, 3296.21, 3114.48, 2413.47, 2232.45, 1668.31, 1542.19, 1356.41 cm ⁻¹
	CI N CI NH ₂	$\begin{array}{c} 1688.37,1511.92,1358.6\ \mathrm{cm}^{-1} \\ {}^{\mathbf{I}}\mathbf{H}\ \mathbf{NMR}\ (\mathbf{CDCl}_{3},300\ \mathbf{MHz}) \!\!: \delta\ 6.80\mathchar`{6.80\mathchar`{1.80\maththar}{1.80\mathar}\!1.80$
IVd IVe		1688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, - NH ₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm ¹³ C NMR (CDCl ₃ , 75 MHz): δ 72.05, 112.46, 115.55, 123.05,125.37, 126.89, 127.09, 129.41, 137.15, 139.41, 145.60, 150.70 ppm IR (KBr) v _{max} : 3411.68, 3296.21, 3114.48, 2413.47, 2232.45, 1668.31, 1542.19, 1356.41 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.95 (s, 2H, -NH ₂), 7.28-7.33 (m, 2H, Ar-H), 7.37-7.49 (m, 1H, Ar-H),
	CI N CI NH ₂	1688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, - NH ₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm ¹³ C NMR (CDCl ₃ , 75 MHz): δ 72.05, 112.46, 115.55, 123.05,125.37, 126.89, 127.09, 129.41, 137.15, 139.41, 145.60, 150.70 ppmIR (KBr) v_{max} : 3411.68, 3296.21, 3114.48, 2413.47, 2232.45, 1668.31, 1542.19, 1356.41 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.95 (s, 2H, -NH ₂), 7.28-7.33 (m, 2H, Ar-H), 7.37-7.49 (m, 1H, Ar-H), 7.55-7.89 (m, 4H, Ar-H) ppm
	CI N CI NH ₂	I688.37, 1511.92, 1358.6 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.80-7.01 (s, 2H, - NH ₂), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm ¹³ C NMR (CDCl ₃ , 75 MHz): δ 72.05, 112.46, 115.55, 123.05,125.37, 126.89, 127.09, 129.41, 137.15, 139.41, 145.60, 150.70 ppm IR (KBr) v _{max} : 3411.68, 3296.21, 3114.48, 2413.47, 2232.45, 1668.31, 1542.19, 1356.41 cm ⁻¹ ¹ H NMR (CDCl ₃ , 300 MHz): δ 6.95 (s, 2H, -NH ₂), 7.28-7.33 (m, 2H, Ar-H), 7.37-7.49 (m, 1H, Ar-H), 7.55-7.89 (m, 4H, Ar-H) ppm ¹³ C NMR (CDCl ₃ , 75 MHz): δ 74.51, 115.54,
	CI N CI NH ₂	$\frac{1688.37, 1511.92, 1358.6 \text{ cm}^{-1}}{^{1}\text{H NMR (CDCl}_{3}, 300 \text{ MHz}): \delta 6.80-7.01 (s, 2H, - NH_2), 7.02-7.03 (m, 1H, Ar-H), 7.08-7.11 (m, 4H, Ar-H), 7.26-7.30 (m, 2H, Ar-H) ppm }{^{13}\text{C NMR (CDCl}_{3}, 75 \text{ MHz}): \delta 72.05, 112.46, 115.55, 123.05, 125.37, 126.89, 127.09, 129.41, 137.15, 139.41, 145.60, 150.70 ppm } \\ \text{IR (KBr) v_{max}: } 3411.68, 3296.21, 3114.48, 2413.47, 2232.45, 1668.31, 1542.19, 1356.41 cm^{-1} } \\ ^{1}\text{H NMR (CDCl}_{3}, 300 \text{ MHz}): \delta 6.95 (s, 2H, -NH_2), 7.28-7.33 (m, 2H, Ar-H), 7.37-7.49 (m, 1H, Ar-H), 7.55-7.89 (m, 4H, Ar-H) ppm } \\ $


Biological prediction study of heteroarylidine malononitriles [III(a-e)] and pyrazole-4carbonitrile derivatives [V(a-e)]

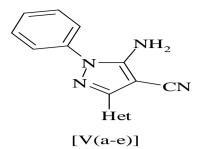

The confirmed structures were subjected to computer programme PASS for the prediction of their biological activities.

Table 2. Biological Activities predicted for the compounds III (a-e).

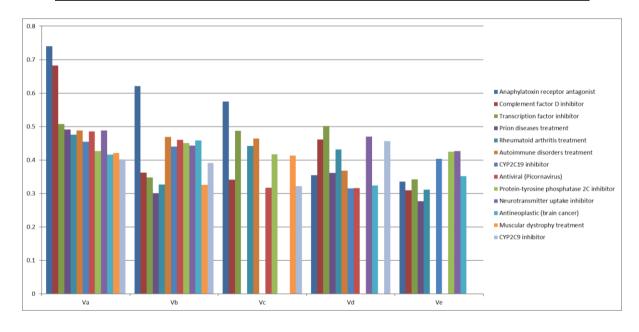
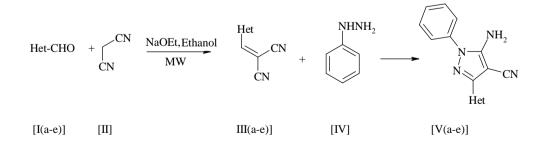

Activity	IIIa	IIIb	IIIc	IIId	IIIe
Complement factor D inhibitor	0.907	0.632	0.564	0.731	0.773
ErbB-1 antagonist	0.839	0.851	0.892	0.721	0.84
Aspulvinonedimethylallyltransferase inhibitor	0.703	0.732	0.699	0.591	0.602
Antipsoriatic	0.631	0.59	0.627	0.552	0.472
Thiol protease inhibitor	0.612	0.516	0.607	0.505	0.421
Monodehydroascorbate reductase (NADH) inhibitor	0.619	0.425	0.460	0.561	0.541
Glycosylphosphatidylinositol phospholipase D inhibitor	0.647	0.557	0.575	0.66	0.572
Chloride peroxidase inhibitor	0.608	0.597	0.532	0.623	0.612
Transcription factor STAT3 inhibitor	0.589	-	0.403	0.566	-
Glutamyl endopeptidase II inhibitor	0.620	0.604	0.584	-	0.616
Malate oxidase inhibitor	0.576	-	0.422	0.378	-
Antineoplastic (breast cancer)	0.577	0.573	0.587	-	-
Antiischemic, cerebral	0.611	-	0.497	0.603	-
Transcription factor STAT inhibitor	0.558	0.545	_	0.497	0.457
Ubiquinol-cytochrome-c reductase inhibitor	0.625	0.732	-	0.619	0.725

Table 5.4 Biological Activities predicted for the compounds V (a-e).

Activity	Va	Vb	Vc	Vd	Ve
Anaphylatoxin receptor antagonist	0.740	0.621	0.575	0.355	0.335
Complement factor D inhibitor		0.362	0.341	0.461	0.309
Transcription factor inhibitor	0.507	0.348	0.487	0.502	0.342
Prion diseases treatment	0.491	0.301	-	0.361	0.277
Rheumatoid arthritis treatment	0.476	0.327	0.442	0.431	0.311
Autoimmune disorders treatment	0.488	0.469	0.464	0.368	-
CYP2C19 inhibitor	0.454	0.44	-	0.315	0.404
Antiviral (Picornavirus)	0.485	0.46	0.317	0.316	-
Protein-tyrosine phosphatase 2C inhibitor	0.427	0.451	0.417	-	0.425
Neurotransmitter uptake inhibitor	0.488	0.443	-	0.47	0.427
Antineoplastic (brain cancer)		0.458	-	0.324	0.352
Muscular dystrophy treatment		0.326	0.413	-	-
CYP2C9 inhibitor	0.402	0.391	0.322	0.456	-

The following conclusions have been made when the compounds from this scheme were subjected to PASS programme,


- 1) All the compounds [III(a-e)] and [V(a-e)] show a variety of possible biological activities.
- 2) Maximum compounds have highest Pa values from 0.8 to 0.4.

- 3) The highest Pa value (0.907) for complement factor D inhibitor is being shown by 2thiophen-2-ylmethylene-malononitrile (IIIa) while anaphylatoxin receptor antagonist activity (Pa=0.740) is being shown by 5-amino-1-phenyl-3-thiophen-2-yl-1H-pyrazole-4carbonitrile (Va).
- All the compounds [III(a-e)] and [V(a-e)] are expected to be active for all the activities from Complement Factor D inhibitor to Ubiquinol-cytochrome-c reductase inhibitor with more or less probability.
- 5) All the compounds [V(a-e)] are active for all the activities from Anaphylatoxin receptor antagonist to CYP2C9 inhibitor with comparable probabilities of being active.

In summary, we have developed a quick, clean, novel, practically efficient and diversity oriented simple method for the synthesis of heteroarylidene malononitriles and pyrazole-4-carbonitriles. The basic catalyst NaOEt efficiently promotes the reaction in a comparatively lesser reaction time. The operational simplicity, easy work up, short reaction time, excellent yield and easy purification of products simply by recrystallization are the captivating features of this method.

RESULT AND DISCUSSION

Initially, 0.112 g of thiophene-2-aldehyde (1 mmol) was added with 0.066 g of malononitrile (1 mmol) and irradiated under microwave irradiations at low power (210 W) in a catalytic amount of alcoholic sodium ethoxide. While the reaction intermediate [IIIa] was formed, 0.108 g of phenyl hydrazine (1 mmol) was added and irradiated in microwave oven. To our surprise the reaction gives the desired product in an excellent yield of 91% within 2.5 minutes. The completion of reaction was confirmed by TLC on precoated silica gel plates and visualized under UV light.

Encouraged by this initial success in order to compile a diverse library of these biologically significant pyrazole-4-carbonitrile derivatives, we accessed this protocol for further study

using different hetero aldehydes. The reagent phenyl hydrazine requires a strong basic agent for being activated as a nucleophile. Thus, to attain a rapid formation of desired product the use of weaker bases was avoided. The catalytic efficiency of sodium ethoxide was compared with the other relevant bases.

CONCLUSION

Here, we have presented an overview of the many efficient, mild, operationally simple and nonconventional synthetic methods to access a library of highly functionalized pyrazole-4carbonitrile derivatives and a broad range of biological activities displayed by these scaffolds that can optimally present a way to capture their intrinsic value.

ACKNOWLEDGMENT

We are thankful to University Grants Commission (UGC) for financial support and Department of Chemistry, CFC, Shivaji University, Kolhapur, Vellore University, Vellore for spectral analysis and Elemental analysis for providing facilities for carrying out biological activities for instrumental support.

REFERENCES

- 1. J. Panda, S. V. Srinivas and M. E. Rao, J. Indian Chem. Soc., 2002; 79: 770.
- 2. K. N. Sarma, M. C. Subha and K. C. Rao, Eur. J. Med. Chem., 2010; 7: 745.
- A. L. Gill, M. Frederickson, A. Cleasby, S. J. Woodhead, M. G. Carr, A. J. Woodhead, M. T. Walker, M. S. Congreve, L. A. Devine, D. Tisi, M. O'Reilly, L. C. A. Seavers, D. J. Davis, J. Curry, R. Anthony, A. Padova, C. W. Murray, R. A. E. Carr and H. J. Jhoti, *Med. Chem.*, 2005; 48: 414.
- 4. T. Singh, S. Sharma, V. K. Srivastava and A. Kumar, Arch. Pharm., 2006; 339: 24.
- 5. Y. Kando, T. Kiji, M. Noguchi and Y. Manade, Jpn. Kokai Tokkyo Koho, 2008; 311: 36.
- P. T. Chovatia, J. D. Akabari, P. K. Kachhadia, P. D. Zaalavadia and H. S. Joshi., J. Serb. Chem. Soc., 2007; 71: 713.
- I. Bouabdallah, L. A. M'Barek, A. Zyad, A. Ramdani, I. Zidane and A. Melhaoui, *Nat. Prod. Rep.*, 2006; 20: 1024.
- A. Kirschining, C. Guang-Wu, G. Drager, I. Schuberth and L. F. Tietz, *Bioorg. Chem.*, 2000; 8: 2347-2354.
- S. Naoa and K. Yoshimi, PCT Int. Appl. WO 03, 066, 051, A12003, Chem. Abstr., 2003; 139: 180058.

- M. M. Mohy El-Din, A. M. Senbel, A. A. Bistawroos, A. El-Mallah, N. A. Nour El-Din,
 A. A. Bekhit and H. A. Abd ElRazik., *Basic Clin. Pharmaco. IToxicol.*, 2011; 108: 26.
- 11. C. Joukhadar, H. Derendrorf and M. Muller, Eur. J. Clin. Pharmacol., 2001; 57: 211-219.
- 12. F. Chimenti, A. Bolasco, F. Manna, D. Secci, P. Chimenti, O. Befani, P. Turini, V. Giovannini, B. Mondovi, R. Cirilli and F. La Torre, *J. Med Chem.*, 2004; 47: 2071.
- J. Lertvorachon, J. P. Kim, D. V. Soldatov, J. Boyd, G. Roman, S. J. Cho, T. Popek, Y. S. Jung, P. C. K. Lau and Y. Konishi, *Bioorg. Med. Chem.*, 2005; 13: 4627.
- 14. J. J. Vora, D. R. Patel, A. R. Patel and Y. S. Patel, *Asian J. Biochem. Pharm. Res.*, 2011;1: 108.