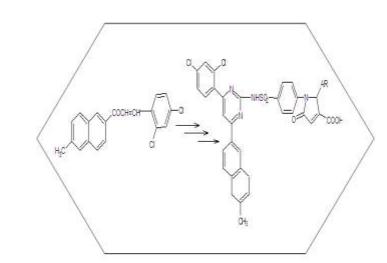


Volume 6, Issue 2, 716-728.

Research Article

ISSN 2277-7105


A FACILE SYNTHESIS AND BIOLOGICAL SIGNIFICANCE OF 2-PYRROLIDINONES DERIVATIVES

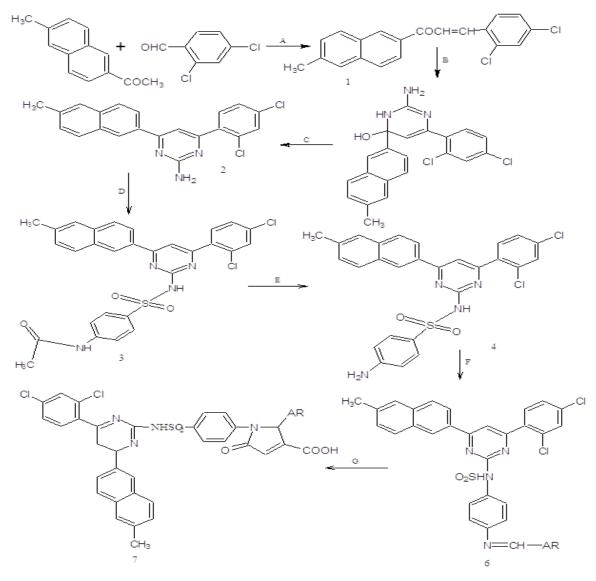
Rekha M. Patel¹, Sarju N. Prajapati² and Kokila A. Parmar*

*Department of Chemistry, H.N.G.University, Patan. ¹M.M. Patel Institute of Science and Research, Kadi. ²Sheth P.T. Arts and Science College, Godhra.

Article Received on 22 Nov. 2016, Revised on 12 Dec. 2016, Accepted on 02 Jan. 2017 DOI: 10.20959/wjpr20172-7698

*Corresponding Author Dr. Kokila A. Parmar Department of Chemistry, H.N.G.University, Patan

ABSTRACT


2-Pyrrolidinones are one of the heterocyclic compounds with very important biological activites. In this view, it was proposed to synthesize some novel 2-Pyrrolidinones from Schiff bases. Here the synthesis of 2-Pyrrolidinones using 4-amino-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)benzenesulfonamide and succinic anhydride under basic condition in presence of ethanol. The structures of synthesized were assigned on the basis of elemental analysis, IR and 1H NMR spectroscopy data. These compounds were screened for their anti-bacterial activity.

KEYWORDS: 2-Pyrrolidinones, Antibacterial activity, Schiff bases.

INTRODUCTION

Substituted 2-pyrrolidinones have seen wide use in medicinal chemistry, both as model compounds to study interactions of larger compounds and as pharmaceuticals. Heterocyclic compounds are the well-known class of compounds for its biological applications out of

which 2-pyrrolidinone occupy unique position due to dominate applications.^{[1-5].} 2pyrrolidinone is heterocyclic compounds which possess wide range of biological activities such as anti-bacterial and anti-fungal.^[6-7] 2- Pyrrolidinone can be used as antiarrhythmic and antihypertensive.^[8], anti-amnestic.^[9] as metabotropic glutamate receptor antagonists.^[10], inhibitor.^[11], in diseases related to connective tissue degradation.^[12], transdermal and dermal enhancing activity.^[13], anticonvulsant.^[14] and can also use as antipsychotic and anti-ischemic activity.^[15] These compounds are containing biological as well as pharmacological activities.^[16-21] Various 2- pyrrolidinone derivatives were prepared by condensation of Schiff base of PFP and succinic anhydride. Also further some of benzimidazole derivatives were synthesized by condensation of some of 2-pyrrolidinone derivatives with ophenylene diamine .^[22-26] The synthetic approach is shown in Scheme-1.

Reaction Scheme

Reaction reagent and condition

$A=40\%$ KOH, OH^-	E= Hydrolysis				
B= Guinidine Hydrochloride,	F= Various Aldehyde (5a-h)				
$C = -H_2O, -H_2$	G= Succinic anhydride				
D= P-Acetyl-aminobenzenesolphonyl chloride and pyridine					

METHODOLOGY

Synthesis of 3-(2,4-dichlorophenyl)-1-(6-methylnaphthalen-2-yl)prop-2-en-1-one (1)

To a well stirred solution of 2,4-dichloro benzaldehyde (0.01 mole) and 1-(6methylnaphthalen-2-yl)ethanone (0.01 mole) in ethanol (35 ml), 40% KOH added till the solution become basic. The reaction mixture was stirred for 24 hrs. The contents were poured into ice, acidified, filtered and crystallized from ethanol.

Synthesis of 4-amino-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)benzenesulfonamide (2)

A mixture of Chalcone (0.01 mole) in 25 ml of absolute alcohol, add Guanidine Hydrochloride (0.015 mole) and sodium hydroxide (0.045 mole in 2 ml of water) was refluxed in water bath at temp 80-90°c for 8 hr. The reaction mixture was poured into ice. The product was isolated and crystallized from ethanol.

Synthesis of N-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)sulfamoyl)phenyl)acetamide (3)

The derivative was prepared by reactions of amino pyrimidine (2) (0.01 mole) with *P*-Acetylamino-benzenesulfonyl chloride (0.012 mole) in dry pyridine (30 ml) was heated to 70-75°C on a water bath for 5 hr. the cold reaction mixture was acidified with dil. hydrochloric acid. The solid that separated was filtered, washed several times with hot water, dried and crystallized from proper solvent.

4-amino-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl) benzenesulfonamide (4)

N-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)sulfamoyl) phenyl)acetamide (**3**) was hydrolysed by refluxing 0.5-1.0 molar solution containing 3.5 equivalents of sodium hydroxide for two hours. After this period, the mixture was cooled to room temperature and neutralized with concentrated HCl pH by approximately 6.0. The mixture was cooled in the ice bath until the total precipitation of the product, the filtered

vacuum, washed with small volume of water ice and purification by recrystallization from ethanol to give white product.

Synthesis of 4-(benzylideneamino)-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2yl)pyrimidin-2-yl)benzenesulfonamide (6 a-h)

The various Schiff bases (6a-h) of 4-amino-N-(4-(2,4-dichlorophenyl)-6-(6methylnaphthalen-2-yl)pyrimidin-2-yl)benzenesulfonamide (4) have been prepared in the similar manner. The procedure is as follow:

A mixture of equimolar amount (0.01 mole) of of 4-amino-N-(4-(2,4-dichlorophenyl)-6-(6methylnaphthalen-2-yl)pyrimidin-2-yl)benzenesulfonamide (4) and the Substituted Benzaldehydes (5) in absolute ethanol (70 ml) and piperidine (0.5 ml) was refluxed for 10 hr. in a water bath. The reaction mixture was concentrated, cooled and poured into ice cold water the solid obtained was filtered and recrystallized from absolute ethanol to give white Schiff base.

Synthesis of 1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl) sulfamoyl)phenyl)-5-oxo-2-phenylpyrrolidine-3-carboxylic acid (7a-h)

Succinic anhydride (0.1mole) and an imine (**6a-h**) (0.1mole) were heated at reflux in chloroform (30 ml) for about 5 hours with TLC monitoring. After the mixture was allowed to stand for 2 days, the solid was filtered. The product thus formed was recrystallized from ethanol to give pure 1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)sulfamoyl)phenyl)-5-oxo-2-phenylpyrrolidine-3-carboxylic acid (**7a-h**) in good yield.

 Table 1: The benzaldehyde derivatives (5a-h) used for Schiff bases formation of 4

 amino-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)

 benzenesulfonamide (4)

No.	Benzaldehyde derivative	Structure
5a	Benzaldehyde	СНО
5b	4-Methoxy benzaldehyde	МеО-СНО
5c	4-Hydroxy benzaldehyde	но-Сно
5d	2-Hydroxy benzaldehyde	СНО

5e	4-Methyl benzaldehyde	н ₃ с-Сно
5f	3,4-Methylenedioxy benzaldehyde (i.e. Veretral)	оСно
5g	4-Hydroxy-3-methoxy benzaldehyde	но——————————СНО МеО
5h	3,4-Diethoxy benzaldehyde	CH ₃ CH ₂ O CH ₃ CH ₂ O

Table 2: Physical characterization constant of 4-(benzylideneamino)-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)benzenesulfonamide (6 a-h)

Com.	Molecular	-Ar	Malaanlar Weight	Elemental analysis, Cal/Found			
No	Formula	-Ar	Molecular Weight	%C	%H	%N	%S
6а	$C_{34}H_{24}Cl_2N_4O_2S$	Phenyl	622.10 gm/mole	65.49	3.88	8.99	5.14
0a	$C_{34}I_{24}C_{12}I_{4}O_{2}S$	Fileliyi	022.10 gm/mole	65.19	3.57	8.89	5.10
бb	$C_{35}H_{26}Cl_2N_4O_3S$	4-Methoxy phenyl	652.11 gm/mole	64.32	4.01	8.57	4.91
00	C351126C12114O35	4-Wethoxy phenyl	052.11 gm/more	64.12	3.92	8.51	4.86
6c	$C_{34}H_{24}Cl_2N_4O_3S$	4-Hydroxy phenyl	638.09 gm/mole	63.85	3.78	8.76	5.01
00	C341124C12114O35	4-frydroxy phenyf	y phenyi 038.09 gm/mole	63.55	3.65	8.56	5.00
6d	$C_{34}H_{24}Cl_2N_4O_3S$	2 Hydroxy phenyl	Hydroxy phenyl 638.09 gm/mole		3.78	8.76	5.01
ou	C341124C12114O35	2-Hydroxy phenyr			3.65	8.56	5.00
6e	$C_{34}H_{26}Cl_2N_4O_2S$	4-Methyl phenyl	nyl 636.12 gm/mole		4.11	8.89	5.03
00	$C_{341126}C_{12114}O_{25}$	4-Methyl phenyl			4.01	8.79	5.00
6f	$C_{35}H_{24}Cl_2N_4O_4S$	3,4-Methylenedioxy phenyl	666.09 gm/mole	62.97	3.62	8.39	4.80
01	$C_{351124}C_{121}N_{4}O_{4}S$	5,4-methylehedioxy phenyl	000.09 gm/mole	62.81	3.55	8.32	4.70
69	$C_{35}H_{26}Cl_2N_4O_4S$	4-Hydroxy-3-methoxy phenyl	methows above (60.11 cm/melo		3.91	8.37	4.79
6g	$C_{351126}C_{121}N_{4}O_{4}S$	4-riyuloxy-3-methoxy phenyl	668.11 gm/mole	62.68	3.76	8.30	4.73
бh	Ch. C. H. Cl. N. O. S. 2.4 Disthered	3,4-Diethoxy phenyl	710.10	64.13	4.53	7.87	4.51
OII	$C_{38}H_{32}Cl_2N_4O_4S$	5,4-Diethoxy phenyl	710.19 gm/mole	64.00	4.48	7.81	4.44

Table3: Physical characterization constant of N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)-4-(4-oxo-2-phenylthiazolidin-3-yl)benzenesulfonamide (7a-h)

Com.	Molecular	-Ar	Molecular	Eleme	ntal ana	lysis, Cal	/Found
No	Formula	-AI	Weight	%C	%H	%N	%S
7a	C. H. Cl.N.O.S	Mathulhanzana	722.12	63.07	3.90	7.74	4.43
7 a	7a $C_{38}H_{28}Cl_2N_4O_5S$	Methylbenzene	gm/mole	63.01	3.78	7.66	4.40
7h	7b $C_{39}H_{30}Cl_2N_4O_6S$	1-Methoxy-4-	752.13	62.15	4.01	7.43	4.25
70		methylbenzene gm/mole	gm/mole	62.01	3.90	7.38	4.20
7c		1 Mathulphanal	738.11	61.71	3.82	7.58	4.34
70	$C_{38}H_{28}Cl_2N_4O_6S$	4-Methylphenol	gm/mole	61.62	3.75	7.50	4.27
	D Mathalahanal	738.11	61.71	3.82	7.58	4.34	
7d	$C_{38}H_{28}Cl_2N_4O_6S$	2-Methylphenol	gm/mole	61.66	3.80	7.45	4.24

www.wjpr.net

7.		1,4-	736.13	63.50	4.10	7.60	4.35
7e	$C_{39}H_{30}Cl_2N_4O_5S$	Dimethylbenzene	gm/mole	63.41	4.01	7.52	4.27
7f	$C_{39}H_{28}Cl_2N_4O_7S$	5-Methyl-1,3-	766.11	61.02	3.68	7.30	4.18
/1	C39H28CI2IN4O75	benzodioxole	gm/mole	60.92	3.60	7.24	4.12
7~	CHCINOS	2-Methoxy-4-	768.12	60.86	3.93	7.28	4.17
7g	$C_{39}H_{30}Cl_2N_4O_7S$	methylphenol	gm/mole	60.77	3.85	7.21	4.10
7h C ₄₂ H ₃₆ Cl ₂ N ₄ O ₇ S	1,2- Diethoxy-4-	810.17	62.15	4.47	6.90	3.95	
	$C_{42}\Pi_{36}C_{12}\Pi_{4}U_{7}S$	methylbenzene	gm/mole	62.07	4.40	6.82	3.90

RESULTS AND DISCUSSION

SPECTRAL STUDIES

IR spectra of 4-amino-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)benzenesulfonamide (4)

Sulfa pyrimidine is a heterocyclic compound. It is an aromatic compound thus it provides the IR frequencies. The bands due to pyrimidine are at $3220-3440 \text{ cm}^{-1}$ and $1610-1640 \text{ cm}^{-1}$ corresponds to N-H (str.) and C=N groups. The peak at 1630 cm^{-1} is indicative of C=N, 1600 cm⁻¹ due to C=C cm⁻¹, and 1310 cm⁻¹ and 1150 cm⁻¹ diagnostic for the presence of the sulphonamido group (-SO₂NH-) also The corresponding N-H in plane and out of plane bending vibrations occurs at 1630 and 699 cm⁻¹ respectively.

NMR spectra of 4-amino-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2yl)pyrimidin-2-yl)benzenesulfonamide (4)

The signal at 4.0 ppm is responsible for N-H proton of pyrimidine $-SO_2NH$ -, signal at 6.35 ppm is responsible for $-NH_2$ proton, and multiple signals between 6.15-7.8 ppm are responsible for aromatic proton. While signal at 2.30 due to two $-CH_3$ on benzene ring.

CMR spectra of 4-amino-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl) pyrimidin-2-yl)benzenesulfonamide (4)

The signals at 101.7 (C₅), 162.5 (C₄), 165.4 (C₆) and 169.3 (C₂) ppm are responsible for pyrimidine multiple signals between 114-140 ppm are responsible for aromatic segments. While signal at 18.8 and 19.1 are due to two $-CH_3$.

Finally the structure of compound conform by LC-MS compound (4) shows peak of (m/Z) at 534.07 which consistent with the calculated molecular weight of Compound (4) i.e. 534.07.

Spectral Studies of compound 6a-6h

4-(benzylideneamino)-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)benzenesulfonamide 6a

Yield: 60%, MP 193^oC, Infrared Spectral Features around cm⁻¹3030, 1500, Aromatic C-H stretching , 1600- 1641 - CH=N-, 1315-1375 -SO₂-, 3250-3330 -NH- of -SO₂NH-, PMR spectral Features (δ ppm) 6.5-8.5 multiplet, aromatic + CH of CH=N protons + H of Pyrimdine + H of SO₂NH +), ¹³CMR spectral Features (δ ppm) 114-131- Benzene, 134 -Ar-Cl, 160- CH=N, 162-169 -pyrimidine.

N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)-4-(4methoxybenzylideneamino)benzenesulfonamide 6b

Yield: 61%, MP 197⁰C, Infrared Spectral Features around cm⁻¹3030, 1500, Aromatic C-H stretching, 1600-1640-CH=N-, 1315-1375 -SO₂-, 3250-3330 -NH- of -SO₂NH-, 1200 -Ar-O- alkyl, PMR spectral Features (δ ppm) 6.5-8.6 (multiplet, aromatic+ CH of CH=N protons + H of Pyrimidine + H of SO₂NH) 3.85(3H, singlet, OCH₃), ¹³CMR spectral Features (δ ppm) 114-131-Benzene, 134 -Ar-Cl, 160 -CH=N, 162-169 pyrimidine, 163-C-O, 56 -CH₃

N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)-4-(4hydroxybenzylideneamino)benzenesulfonamide 6c

Yield: 60%, MP 199⁰C, Infrared Spectral Features around cm⁻¹3370-OH, 3030, 1500, Aromatic C-H stretching, 1600-1640 -CH=N-, 1315-1375 -SO₂-, 3250-3330 -NH- of -SO₂NH-, PMR spectral Features (δ ppm) 6.5-8.6 (multiplet, aromatic+ CH of CH=N protons + H of Pyrimidine + H of SO₂NH) 3.85 (3H, singlet, OCH₃), ¹³CMR spectral Features(δ ppm) 114-131-Benzene, 134- Ar-Cl, 160 -CH=N, 162-169 - pyrimidine, 163 -C-O.

N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)-4-(2hydroxybenzylideneamino)benzenesulfonamide 6d

Yield: 62%, MP 191^oC, Infrared Spectral Features around cm⁻¹3370-OH, 3030, 1500, Aromatic C-H stretching, 1600-1640-CH=N-, 1315-1375-SO₂-, 3250-3330-NH- of -SO₂NH-, PMR spectral Features (δ ppm) 6.5-8.6 (multiplet, aromatic + CH of CH=N protons + H of Pyrimidine + H of SO₂NH) 3.85 (3H, singlet, OCH₃), ¹³CMR spectral Features (δ ppm) 114-131-Benzene, 134- Ar-Cl, 160 - CH=N, 162-169 -pyrimidine, 163 -C-O.

N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)-4-(4methylbenzylideneamino)benzenesulfonamide 6e

Yield: 62%, MP 193⁰C, Infrared Spectral Features around cm⁻¹2950, 1370 - CH₃, 3030, 1500, Aromatic C-H stretching, 1600-1640 -CH=N-, 1315-1375 -SO₂- ,3250-3330 -NH- of -SO₂NH-, PMR spectral Features (δ ppm) 6.5-8.7 (multiplet, aromatic+ CH of CH=N protons + H of Pyrimidine + H of SO₂NH) 2.34 (3H, singlet, CH₃), ¹³CMR spectral Features (δ ppm)114-131-Benzene, 134- Ar-Cl, 160 - CH=N, 162-169 -pyrimidine, 21-CH₃.

4-(benzo[d][1,3]dioxol-5-ylmethyleneamino)-N-(4-(2,4-dichlorophenyl)-6-(6methylnaphthalen-2-yl)pyrimidin-2-yl)benzenesulfonamide 6f

Yield: 60%, MP 201^oC,Infrared Spectral Features around cm⁻¹2920, 2850 - CH₂-, 1450, 3030, 1500, Aromatic C-H stretching, 1600–1640 -CH=N-, 1315-1365 -SO₂-, 3250-3330 -NH- of - SO₂NH-, PMR spectral Features (δ ppm) 6.5-8.7 (multiplet, aromatic+ CH of CH=N protons + H of Pyrimidine + H of SO₂NH) 6.07 (2H, singlet, -O-CH₂-O-), ¹³CMR spectral Features (δ ppm) 101.2 -CH₂-O-, 114-131-Benzene, 134- Ar-Cl, 160 -CH=N, 162-169 - pyrimidine, 21-CH₃.

N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)-4-(3-hydroxy-4methoxybenzylideneamino)benzenesulfonamide 6g

Yield: 57%, MP 199⁰C, Infrared Spectral Features around cm⁻¹ 3370 -OH, 2950,1370 -CH₃, 3030,1500, Aromatic C-H stretching, 1600-1640 -CH=N-, 1315-1375 -SO₂-, 3250-3330 - NH- of -SO₂NH-, PMR spectral Features (δ ppm) 6.5-8.7 (multiplet, aromatic+ CH of CH=N protons + H of Pyrimidine + H of SO₂NH) 3.83 (3H, singlet, -O-CH₃) 5.35 (1H, Singlet, - OH), ¹³CMR spectral Features (δ ppm) 114-131-Benzene, 134- Ar-Cl, 160 - CH=N, 162-169 -pyrimidine, 149-151 -C - O, 56-OCH₃.

N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)-4-(3,4diethoxybenzylideneamino)benzenesulfonamide 6h

Yield: 60%, MP 190⁰C, Infrared Spectral Features around cm⁻¹2950,2820, -CH₂-, 1450,3030,1500, Aromatic C-H stretching, 1600-1640 -CH=N-, 1315-1375 -SO₂-, 3250-3330 -NH- of -SO₂NH-, PMR spectral Features (δ ppm) 6.5-8.7 (multiplet, aromatic + CH of CH=N protons + H of Pyrimidine + H of SO₂NH) 4.0 (4H, quartet, 2CH₂) 1.33 (6H, triplet, 2CH₃), ¹³CMR spectral Features (δ ppm) 114-131-Benzene, 134- Ar-Cl, 160 - CH=N, 162-169 - pyrimidine, 149-151 -C-O.

1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl) sulfamoyl)phenyl)-5-oxo-2-phenylpyrrolidine-3-carboxylic acid 7a

Yield: 62%, MP 197-98⁰C, Infrared Spectral Features around cm⁻¹ 3054, 1600, 1532 Aromatic C-H stretching, 1667 C=O of COOH, 1717 C=O of pyrrolidinone, and other band are similar to schiff bases. NMR spectral Features (δ ppm) 6.5-8.0 (multiplet, aromatic + H of Pyrimidine+H of SO₂NH), 5.0 (H, d, C₂), 2.5-2.7 (2H, d, C₄), 3.3-3.8 (1H, q, C₃), 11.00 (H, s, COOH), ¹³CMR spectral Features (δ ppm) 102-131- Benzene, 134- Ar-Cl, 163-169pyrimidine, 178.3 C of COOH, 174.9 C of CO, 50.2 C₂H of pyrrol ring.

1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl) sulfamoyl)phenyl)-2-(4-methoxyphenyl)-5-oxopyrrolidine-3-carboxylic acid 7b

Yield: 61%, MP 185-86⁰C, Infrared Spectral Features around cm⁻ 3054, 1600, 1532 Aromatic C-H stretching, 1670 C=O of COOH, 1717 C=O of pyrrolidinone, 1200 Ar-O-CH₃ and other band are similar to schiff bases. NMR spectral Features (δ ppm) 6.5-8.0 (multiplet, aromatic + H of Pyrimidine + H of SO₂NH), 5.0 (H, d, C₂), 2.5-2.7 (2H, d, C₄), 3.3-3.8 (1H, q, C₃), 11.00 (H, s, COOH), 3.83 (3H, S, OCH₃), ¹³CMR spectral Features (δ ppm) 102-131-Benzene, 134- Ar-Cl, 163-169- pyrimidine, 178.3 C of COOH, 174.9 C of CO, 50.2 C₂H of pyrrol ring, 55.8 –OCH₃.

1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl) sulfamoyl)phenyl)-2-(4-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid 7c

Yield: 60%, MP 195-96⁰C, Infrared Spectral Features around cm⁻¹ 3030, 1600, 1500 Aromatic C-H stretching, 1670 C=O of COOH, 1717 C=O of pyrrolidinone, 3200-2600 –OH phenolic, and other band are similar to schiff bases. NMR spectral Features (δ ppm) 6.5-8.0 (multiplet, aromatic + H of Pyrimidine + H of SO₂NH), 5.0 (H, d, C₂), 2.5-2.7 (2H, d, C₄), 3.3-3.8 (1H, q, C₃), 11.00 (H, s, COOH), 5.35 (H, S, -OH), ¹³CMR spectral Features (δ ppm) 102-131- Benzene, 163-169- pyrimidine, 178.3 C of COOH, 174.9 C of CO, 50.2 C₂H of pyrrol ring.

1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl) sulfamoyl)phenyl)-2-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid 7d

Yield: 58%, MP 190-91^oC, Infrared Spectral Features around cm⁻¹ 3030, 1600, 1500 Aromatic C-H stretching, 1670 C=O of COOH, 1717 C=O of pyrrolidinone, 3200-2600 –OH phenolic, and other band are similar to schiff bases. NMR spectral Features (δ ppm) 6.5-8.0 (multiplet, aromatic + H of Pyrimidine + H of SO₂NH), 5.0 (H, d, C₂), 2.5-2.7 (2H, d, C₄), 3.3-3.8 (1H, q, C₃), 11.00 (H, s, COOH), 5.35 (H, S, -OH), ¹³CMR spectral Features (δ ppm) 102-131- Benzene, 163-169- pyrimidine, 178.3 C of COOH, 174.9 C of CO, 50.2 C₂H.

1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl) sulfamoyl)phenyl)-5-oxo-2-p-tolylpyrrolidine-3-carboxylic acid 7e

Yield: 63%, MP 191-92⁰C, Infrared Spectral Features around cm⁻¹ 3030, 1600, 1500 Aromatic C-H stretching, 1670 C=O of COOH, 1717 C=O of pyrrolidinone, 2950, 1370 – CH₃, and other band are similar to schiff bases. NMR spectral Features (δ Ppm) 6.5-8.0 (multiplet, aromatic + H of Pyrimidine + H of SO₂NH), 2.5-2.7 (2H, d, C₄), 11.00 (H, s, COOH), 3.3-3.8 (1H, q, -C₃), ¹³CMR spectral Features (δ Ppm) 102-131- Benzene, 163-169-pyrimidine, 178.3 C of COOH, 174.9 C of CO, 21.3 CH₃.

2-(benzo[d][1,3]dioxol-5-yl)-1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2yl)pyrimidin-2-yl)sulfamoyl)phenyl)-5-oxopyrrolidine-3-carboxylic acid 7f

Yield: 60%, MP 184-85^oC, Infrared Spectral Features around cm⁻¹ 3030, 1600, 1500 Aromatic C-H stretching, 1670 C=O of COOH, 1717 C=O of pyrrolidinone, 1200 Ar-Oalkyl, and other band are similar to schiff bases. NMR spectral Features (δ ppm) 6.5-8.0 (multiplet, aromatic + H of Pyrimidine + H of SO₂NH), 5.0 (H, d, C₂), 2.5-2.7 (2H, d, C₄), 11.00 (H, s, COOH), 2.34 (3H, S, -CH₃), ¹³CMR spectral Features (δ ppm) 102-131-Benzene, 163-169- pyrimidine, 178.3 C of COOH, 174.9 C of CO, 101.2 –O-CH₂-O.

1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)sulfamoyl) phenyl)-2-(4-hydroxy-3-methoxyphenyl)-5-oxopyrrolidine-3-carboxylic acid 7g

Yield: 60%, MP 184-85^oC, Infrared Spectral Features around cm⁻¹ 3030, 1600, 1500 Aromatic C-H stretching, 1670 C=O of COOH, 1717 C=O of pyrrolidinone, 3200-2600 –OH phenolic, 1200 Aryl-alkyl ether, and other band are similar to schiff bases. NMR spectral Features (δ ppm) 6.5-8.0 (multiplet, aromatic + H of Pyrimidine + H of SO₂NH), 5.0 (H, d, C₂), 2.5-2.7 (2H, d, C₄), 3.3-3.8 (1H, q, C₃), 11.00 (H, s, COOH), 3.83 (3H, S, -OCH₃), ¹³CMR spectral Features (δ ppm) 102-131- Benzene, 163-169- pyrimidine, 178.3 C of COOH, 174.9 C of CO, 50.2 C₂H, 56.1 –OCH₃.

1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)sulfamoyl) phenyl)-2-(3,4-diethoxyphenyl)-5-oxopyrrolidine-3-carboxylic acid 7h

Yield: 62%, MP 191-92⁰C, Infrared Spectral Features around cm⁻¹ 3030, 1600, 1500 Aromatic C-H stretching, 1670 C=O of COOH, 1717 C=O of pyrrolidinone, 1200 Aryl-alkyl ether, other band are similar to schiff bases.NMR spectral Features (δ ppm) 6.5-8.0 (multiplet, aromatic + H of Pyrimidine + H of SO₂NH), 2.5-2.7 (2H, d, C₄), 3.3-3.8 (1H, q, C₃), 11.00 (H, s, COOH), 4.0-4.10 (4H, q, 2CH₂), ¹³CMR spectral Features (δ ppm) 102-131-Benzene, 163-169 -pyrimidine, 178.3 C of COOH, 174.9 C of CO, 50.2 C₂H, 64.9 –OCH₂.

Table 4: Antimicrobial activity of Standards and Solvent (DMF)

		Zone of inhibition (in mm)					
No.	Name of	Gram positive		Gra	m negative		
190.	compound	B.Subtillis	S.Aureus	E.Coli	Ps.Aeruginosa		
1	DMF	8	5	6	7		
2	Ampicillin	15	12	20	20		
3	Tetracyclin	21	22	15	18		
4	Gentamycin	20	19	18	22		
5	Chloramphenicol	21	23	17	24		

Table5:Antimicrobialactivityof4-(arylideneamino)-N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-yl)pyrimidin-2-yl)benzenesulfonamide (6a-h)

	Zone of Inhibition (in mm)					
Compound	Gram	positive	Gram	negative		
(Designation)	B.Subtillis	S.Aureus	E.Coli	Ps.Aeruginosa		
ба	12	13	08	12		
6b	10	12	10	10		
6с	14	14	15	10		
6d	10	10	08	09		
6e	06	16	12	20		
6f	13	11	10	14		
6g	21	19	14	16		
6h	14	14	18	17		

Table 6:Antimicrobial activity 1-(4-(N-(4-(2,4-dichlorophenyl)-6-(6-methylnaphthalen-2-
yl)pyrimidin-2-yl)sulfamoyl)phenyl)-5-oxo-2-phenylpyrrolidine-3-carboxylic acid (7a-h)

Compound	Zone of Inhibition (in mm)					
Compound	Gram positive		Gram negative			
(designation)	B.Subtillis	S.Aureus	E.Coli	Ps.Aeruginosa		
7a	12	12	20	19		
7b	14	17	14	18		
7c	16	10	08	22		
7d	22	17	14	13		
7e	11	09	13	11		

7f	15	13	05	14
7g	07	05	06	16
7h	15	17	14	21

CONCLUSIONS

In conclusion, a new series of compound 6(a-h) and 7(a–h) were synthesized, compounds screened for their spectral study and biological study. The investigation of antimicrobial activities data revealed that the compounds (7a), (7b), (7c), (7d) and (7h), displayed excellent activity, the compounds(7e), (7f) and (7g) showed moderate activity and rested compound with standard drugs.

ACKNOWLEDGEMENTS

We heartily thankful to Department of Chemistry for providing elemental analysis and also thankful to Head, CDRI, Lucknow for providing spectral data for the compounds.

REFERENCES

- 1. Ciamician; Magnaghi, Ber. 1885; 18: 2079.
- 2. Andrews; Mcelvain, J. Am. Chem. Soc. 1929; 51: 887.
- 3. Spath; Breusch, Montsch. 1928; 50: 349.
- 4. Elderfield; Hageman, J. Org. Chem. 1949; 14: 605.
- 5. Menozzi; Appiani, Gazz. Chim. Ital. 1894; 24I: 373.
- 6. Reppe, De; 1085525 (to BASF); Merck Index, Ed. IV.
- 7. Waldermar Adam, Aimin Zhang, Eur. J. Org. Chem. 2004; 147.
- 8. Adam W, Zhang A. Eur. J. Org. Chem, 2004; 147.
- 9. Thamotharan S, Parthasarathi V, Malik R, Jindal D P, Piplani P, Linden A, Acta Crystallographica, Sec.C: Cryst. Str. Comm. 2003; C59: 0514.
- 10. Clark B P, Cwi C L, Harris J R, Kingston A E, Scott W L. 2000; US pat. 00 69,816, 23, C. A, 2001; 134: 4857t.
- Becker M R, Ewing W R, Davis R S, Pauls H W, A.Li C.Ly, Mason H J, Choi-Sledeski Y M, Spada A P, Chu V. Bioorg. Med. Chem. Lett. 1999; 9: 2753.
- 12. Jacobson E J, US Pat. 12 Sept 1997; 97, 32,846, C.A, 1999; 127: 293126m.
- Godwin D A, Michniak B B, Player M R, Walter J, Sowel Sr. Int. J. Pharm. 1997; 155:
 241.
- Saturing C, Capasso A, Saturnino P, De Martino G, Sorrentino L, Lancelot J. C, M.Robba. J. Pharm. Belg. 1997; 52: 57.

- 15. Jizulka H, Oguchi T, Eur. Pat. Aug. 1995; 668: 275 23; C. A. 1996; 124: 8606b.
- 16. Koca M, Servi S, Kirilmis C, Ahmedzade M, Kazaz C. Eur. J. Med. Chem. 2005; 40: 135.
- 17. Alper-Hayta S, Arisoy M, Temiz-Arpaci O, Yildiz I, Aki E. Eur. J. Med. Chem. 2008; XX,1.
- Kirilmis C, Ahmedzade M, Servi S, Koca M, Kizirgil A. Eur. J. Med. Chem. 2008; 43: 300.
- 19. Wahab B F A, Aziz H A A, Ahmed E M. Eur. J. Med. Chem. 2008; XXX, 1.
- 20. Parmar K A, Vasava C J, Parajapati S N. World. J. Phar. Res. 2015; 11: 1762-1775.
- Parmar K A, Parajapati S N, Int. letters of chemistry, Physics and Astronomy. 2015; 16: 84-93.
- 22. Katarzyna Kulig; Barbara Malawska, Biomedical Chromatography. 2003; 17(5): 318.
- 23. Cristiana Fava, Roberta Galeazzi, Giovanna Mobbilli, Mario Orena Tetrahedron:
- a. Asymmetry, 2003; 14(23): 3697.
- 24. Pei-Qiang Huang; Xiao Zheng; Hua Wei, Heterocycles. 2003; 60(8): 1833.
- 25. Thamotharan, S; Parthasarathi, V; Malik, R; Jindal, D. P; Piplani, P; Anthony Linden. Acta Crystallographica, Sec.C: Cryst. Str. Comm. 2003; C 59(9): 0514.
- 26. Guindon, Y; Bancheqroun, M; Tetrahedron Lett. 2001; 42(35): 6041.