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ABSTRACT 

The tumor vasculature is an important target for anticancer therapy 

because the blood vessels deliver oxygen and nutrients to whole-body, 

as well as provide a route for tumor development and metastatic 

spread. The vascular targeting agents (VTAs) are promising strategy 

targeting the tumor vasculature. In recent years, the increased 

knowledge of tumor vascular system and its molecular mechanism has 

led to the clinical studies or approval of a lot of new VTAs. Although 

beneficial for cancer patients, their limited efficacy remains a 

challenging problem and new therapeutic strategies are being explored. 

This review highlights the recent advances of VTAs including their 

structures, biological mechanism and clinical status. 

 

KEYWORDS: anticancer drugs; tumor vasculature and vascular 

targeting agents. 

 

INTRODUCTION 

Based on the statistics of the World Cancer Report 2014, an estimated 14 million new cancer 

cases occurred all over the world in 2012 and the figure is projected to rise to 22 million 

annually within the next two decades.
[1]

 Cancer is the leading cause of death in the world.
[2]

 

Early in 1971, Dr. Folkman proposed a concept that solid tumor growth is angiogenesis-

dependent.
[3]

 In 1982, Dr. Denekamp described the antivascular approaches which target the 

established tumor blood vessels.
[4]

 Blood vessels provide avenues to deliver essential oxygen 
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and nutrients and to eliminate waste products of metabolism, as well as to offer convenient 

routes for tumor growth and metastasis. The tumor vasculature has become an important 

target for anticancer/antitumor therapy and brought about a vigorous field of new anticancer 

therapeutics over the past decade.
[5]

   

 

VTAs, also known as angiogenic inhibitors (AIs), prevent the development and progression 

of tumor neovascularization and exhibit preventive and chronic effects.
[6]

 The increased 

knowledge of the tumor vascular system and its molecular mechanism has led to the clinical 

studies and/or approval of a lot of new VTAs. Although beneficial as anticancer agents, their 

limited efficacy remains a major challenge. New principles and strategies aimed at improving 

the outcome of cancer treatment are being explored.  

 

This article focuses on the recent progress of VTAs which have been approved or undergoing 

clinical trials. Besides describing the connection between tumor angiogenesis and tumor 

growth briefly, it highlights the structural features of small molecular drugs, the biological 

mechanism, clinical status and the insufficiency if any. 

 

ANGIOGENESIS AND TUMOR 

Angiogenesis is a normal and vital process in cell growth and development. However, it is 

also a fundamental event of tumor progression and metastasis. Angiogenesis depends on the 

coordinated regulation of multiple factors. In the initial stage of cancer, tumor cells absorb 

nutrients and oxygen for growth and proliferation from the surrounding tissues mainly by 

diffusion. Vessels are not imperative in this period. Tumors cannot exceed 1-2 mm
3
 in an 

avascular state. Angiogenesis is involved for the purpose of obtaining sufficient oxygen and 

nutrients and discarding wastes.  Hypoxia and other oncogenic-inducing factors activate the 

angiogenic switch which propagates angiogenesis.
[7, 8]

 New vessels rapidly proliferate to 

increase blood supply and to accelerate tumor growth exponentially. 
[9]

 Tumor will enter the 

vascular period. 

 

Several modes of vessel formation have been identified in normal tissues such as sprouting 

angiogenesis, vasculogenesis and intussusception. Besides these, tumor cells can use vessel 

co-option, vascular mimicry or endothelial cells derived from putative cancer stem-like cells 

to form tumor blood vessels.
[10]

Multiple pathophysiological steps are required in the blood 

vessel formation process 
[11]

: These are 1. pericyte detachment and blood vessel dilation; 2. 

basement membrane and extracellular matrix (ECM) degradation; 3. onset of new blood-
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vessel sprout lumen through endothelial cell conglutination guided by pericytes; 4. fusion of 

blood-vessel sprouts and formation of new blood vessels.  

 

Each step in tumor angiogenesis is regulated by a variety of angiogenic factors such as 

angiopoietin (Ang), vascular endothelial growth factor (VEGF), platelet-derived growth 

factor (PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF), epidermal 

growth factor (EGF) and insulin-like growth factor (IGF).
[12]

 Usually, signal transduction, 

activators of transcription 3 (STAT3) and hypoxia inducible factor (HIF) are activated under 

hypoxic conditions in the core of tumors. Phosphorylated STAT3 and HIF bind VEGF 

promoter region simultaneously, up-regulate transcription of VEGF and promote 

angiogenesis which   is important for tumor cell survival.
[13, 14]

 

 

Tumor blood vessels are different from normal vasculature because of altered morphology, 

blood flow and permeability.
[15, 16]

 Vascular endothelial cells in normal tissues are integral, 

orderly and connected tightly with normal cell morphology. These cells are usually quiescent. 

When tumor endothelial cells proliferate at a very fast rate, the tumor vasculature becomes 

disorganized, tortuous, thin-walled and highly permeable with the no pericytes and 

abnormalities in the basement membrane. The blood flow is frequently sluggish or even in a 

reversed direction.  

 

In summary, Angiogenesis is a complex process that relies on the coordination of many 

different activities. Endothelial cells, pericytes, fibroblasts, growth factors and ECM 

components interact with each other to influence endothelial cell migration, proliferation, 

tube formation and vessel stabilization.
[17]

 Over the past decade, the increased understanding 

of tumor vasculature has made it possible to restrain tumor progression by inhibiting tumor 

angiogenesis. 

 

VASCULAR TARGETING AGENTS 

VTAs work by blocking tumor cells from making new blood vessels. They achieve their anti-

angiogenic effect mainly by inhibiting specific tyrosine kinases which are involved in tumor 

neovascularization. They therefore have a preventive effect, require long term therapy and are 

more effective when given in the early stage of the disease before the tumor is well 

established or after surgery to prevent recurrence.
[18]

The effects of VTAs are tumor-cell 

necrosis and secondary tumor-cell death though these results are quiet slow.
[3]

As mentioned 

before, Angiogenesis is a very complex multi-step process. All aspects and regulatory factors 
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in this process are likely to be the potential targets of VTAs.
[19, 20]

By their different 

mechanisms of action, VTAs can be divided into: (a) VTAs associated with VEGF/VEGFR 

signal pathway; (b) VTAs associated with FGF/FGFR signal pathway; (c) VTAs associated 

with PDGF/PDGFR signal pathway; (d) VTAs directly inhibiting endothelial cell 

proliferation; (e) Matrix metalloproteinase inhibitors; (f) VTAs interfering with endothelial 

cell adhesion; (g) VTAs associated with unknown mechanisms.  

 

VTAs associated with VEGF/VEGFR signal pathway 

VEGFs are major regulators among the blood vessel growth-stimulating factors，and the 

inhibition of VEGFR kinase has been one of the most powerful clinical strategies in cancer 

treatment.
[21]

 Six known members of the VEGF family have been discovered: VEGF-A, -B, -

C, -D, and -E and the placental growth factor (PLGF). Biological effects are mediated by 

VEGFs signaling through VEGF receptors (VEGFRs) known as members of receptor 

tyrosine kinases (RTKs). So far, three VEGFRs have been found.  These are VEGFR-1 (fms-

like tyrosine kinase receptor, Flt-1), VEGFR-2 (kinase insert domain containing receptor, 

Flk-1/KDR) and VEGFR-3 (Flt-4).
[22, 23]

 VEGFR-1 and -2 are expressed on vascular 

endothelium and up-regulated in angiogenesis. The angiogenic effects mainly depend on 

VEGF-A which binds to and activates VEGFR-2 on vascular endothelium resulting in 

mitogenic, chemotactic and prosurvival signal upregulation.
[24]

 Inhibition of VEGF/VEGFR 

signal pathway suppresses angiogenesis, which has become an important strategy in the 

treatment of solid tumors. Several kinds of drugs targeting the VEGF/VEGFR signal have 

been approved, and more drugs are in clinical studies. Their structures range from biological 

macromolecules to diverse small chemical molecules. 

  

Neutralizing antibodies  

Bevacizumab (Avastin 
®
, Genentech) is one of the recombinant humanized monoclonal 

antibodies and the first FDA-approved angiogenesis inhibitor. It specifically binds to and 

neutralizes all human VEGF-A isoforms and bioactive proteolytic fragments to suppress 

angiogenesis. Bevacizumab significantly prolongs overall survival of metastatic colorectal 

cancer patients, non-small cell lung cancer (NSCLC) patients, and glioblastoma multiforme 

patients.
[25]

 It has also been confirmed to be effective against lung and breast cancer.
[26]

 

Aflibercept (Zaltrap®, Sanofi-Aventis), known as VEGF-Trap, contains the extracellular 

domain 2 of VEGFR-1 and extracellular domain 3 of VEGFR-2 linked to the Fc portion of 

human IgG1.
[27]

 Similar to Bevacizumab, Aflibercept has a conspicuous effect on preexisting 
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or newly formed vessels. It functions as a decoy VEGFR and inhibits VEGF signaling by 

selectively binding to VEGF-A, -B and PLGF.
[28]

 Aflibercept significantly improved survival 

in previously treated metastatic colorectal cancer patients and was approved by FDA in 

August 2012.
[29]

  

 

Ramucirumab (IMC-1121B; ImClone Systems/Eli Lilly), is a fully human mAb that binds to 

human VEGFR-2 thus blocking VEGF from binding and inhibiting angiogenesis. It is 

currently in Phase III studies for patients with breast cancer and hepatocellular carcinoma.
[30]

 

Ramucirumab is also in its phase III trial as an agent for the treatement of colorectal, prostate, 

liver, and ovarian cancers.
[31, 32]

 In September 2013, its phase III breast cancer trial failed due 

to poor progression-free survival among patients 
[33, 34]

 In 2014, it was approved by FDA for 

gastric cancer and non-small cell lung.
[35] 

 

IMC-18F1, another fully humanized IgG1 antibody which binds to VEGFR-1, has been 

associated with inhibition of cancer growth in multiple stages. The preliminary results from 

its phase I trial have exhibited its favorable safety profile.
[36]

 IMC-1C11, a chimeric anti-

KDR antibody, blocks VEGF-KDR interaction, blocks VEGFR activation and restrains 

VEGFR-induced endothelial cell proliferation. The Phase I Study showed that IMC-1C11 is 

both safe and well tolerated.
[37]

  

 

Small molecular VEGFR inhibitors 

Great effort has been made in recent years to design and synthesize small molecular VEGFR 

inhibitors as cancer drugs besides neutralizing antibodies. Sorafenib (1, BAY43-9006, 

Nexavar
®
 Bayer/Onyx) (Fig. (1) was the first approved oral VEGFR inhibitor. It is a multiple 

inhibitor of tyrosine kinase receptors, including VEGFR-1, -2, -3, PDGFR, FGFR, stem cell 

factor receptor (kit), Flt-3, etc.
[38]

 Sorafenib was approved by FDA in 2005 for the treatment 

of advanced kidney cancer and in 2013 for the treatment of progressive differentiated thyroid 

carcinoma(DTC).
[39]

 E7080 (2) (Fig. (1) is an analogue of Sorafenib and also an oral inhibitor 

of multiple RTKs such as VEGFR, FGFR and PDGFR.
[40]

  New research shows that E7080 

does not markedly suppress tumor cell proliferation but inhibits their migration and 

invasion.
[41]

 E7080 is in phase I/II clinical trial for patients with liver cancer and phase III 

trial for patients with thyroid cancer.
[43, 44, 45]
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Fig. (1). Sorafenib and its analogue. 

 

Sunitinib (3, SU-11248, Sutent
®
, Pfizer) (Fig. (2) an oral VEGFR inhibitor, inhibits at least 

eight RTKs including VEGFR-1 -2 -3, PDGFRa and PDGFRb, Kit, Flt-3 and colony-

stimulating factor-1 receptor (CSF-1R).
[42]

It was approved for marketing by FDA in 2006 for 

the treatment of gastrointestinal stromal tumor and metastatic renal cell carcinoma. New 

findings suggest that Sunitinib increases the sensitivity of endothelial cells to radiation 

therapy thus it can be combined with radiation therapy for better results.
[46]

 Sunitinib 

analogues SU6668 (4), SU-14813 (5), TKI-258 (6) and BIBF 1120 (7) are also multi-target 

RTK inhibitors (Fig. (2). SU6668 is in phase II clinical trial for breast cancer, liver cancer 

and other solid tumors. SU-14813 and TKI-258 have well-finished phase I clinical trial for 

malignant tumor treatment.
[47, 48]

  Phase II clinical trials of BIBF 1120 on patients with 

relapse ovarian cancer after chemotherapy revealed that the agent has a good safety profile 

and potential improvement in progression-free survival.
[49]

 Its phase III clinical trial is 

ongoing.   

 

 

Fig. (2). Sunitinib and its analogues. 

http://www.wjpr.net/


www.wjpr.net                                         Vol 4, Issue 04, 2015.                                            

            

 

247 

Muyaba et al.                                                        World Journal of Pharmaceutical Research 

Pazopanib (8, GW-786034, Votrient
®
, Glaxo Smith Kline) (Fig. (3), an oral angiogenesis 

inhibitor targeting VEGFR, PDGFR and Kit, has been approved for patients with advanced 

renal cell carcinoma by FDA.
[50]

 It is simultaneously on Phase II clinical studies for ovarian 

cancer, urothelial cancer and recurrent glioblastoma.
[51, 52]

 Vandetanib (9, ZD6474, Zactima, 

Caprelsa
®
, AstraZeneca) (Fig. (3), an orally available small molecular inhibitor, is a 

reversible VEGFR-2 antagonist and also inhibits EGFR.
[53]

 In April 2011, Vandetanib was 

approved by FDA and became the first agent for late-stage and medullary metastatic thyroid 

cancer in adult patients who are ineligible for surgery. 

 

 

Fig. (3). Pazopanib and Vandetanib. 

 

Recently there are several VEGFR inhibitors that have been developed.
[54]

 Cabozantinib (10, 

Cometriq
®
, Bristol-Myers Squibb) for the treatment of progressive medullary thyroid 

cancer and Axitinib (11, Inlyta
 ®

 Pfizer) for Renal Cell Carcinoma got approved by FDA in 

Nov and Jan 2012 respectively.
[55,56]

 But unfortunately, Brivanib (12, BMS-58-2664) and 

Motesanib (13, AMG-706) were ceased for advanced hepatocellular carcinoma and for 

advanced non-small-cell lung carcinoma (NSCLC) respectively due to their disappointing 

Phase III results.
[57, 58] 

 

Apart from VEGFR inhibitors cited above, Vatalanib (14, PTK-787/ ZK222584) Cediranib 

(15, AZD -2171) and Telatinib (16, BAY57-9352) are   undergoing l phase III trials.
[59-61]

 CP-

547632 (17), OSI-930 (18), BIBF-1000 (19), Linifanib (20, ABT-869 / AL-39324 / RG3635) 

are in phase II 
[62-65]

 (Fig. (4).  
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Fig. (4). Others VEGFR inhibitors on trials. 

 

VTAs with FGF/FGFR signal pathway  

FGFs are a family of heparin-binding growth factors which contain 22 known members and 

participate in diverse processes including embryonic development, tissue regeneration and 

wound healing.
[66]

 FGFs exhibit their angiogenic activity by interacting with various 

endothelial cell-surface receptors including FGFRs, integrins and heparin sulphate 

proteoglycans (HSPGs).
[67]

 The combination of FGFs with FGFRs is mediated by HSPGs.
[68]

 

As co-receptor of FGFR, HSPGs are composed of a core protein and one or more heparin-

sulfate glycosaminoglycan (HSGAG) chains. FGFs exist as inactive dimers in matrix until 

they interact with HSPG fragments as diffusible complexes and reach the cell surface.
[69]

 The 

active FGF dimers lead to FGFR dimerization and transphosphorylation. The signal 

transduction pathways are activated and then endothelial cell proliferation and migration are 

accelerated to form new blood vessels at last.
[70, 71] 

 

PI-88 (21) (Fig. (5) is a heparin sulphate simulant which is a mixture of highly sulfonated 

mannan oligosaccharides. PI-88 binds to FGF-1, -2 and VEGF with high affinity and 

restrains these ligands from combining with their corresponding receptors. Moreover, PI-88 

inhibits the activity of heparanase so as not to prompt cellular proliferation by degrading the 
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heparan sulphate of ECM.
[72]

 PI-88 is in phase III clinical trial as an adjuvant therapy for 

hepatocellular carcinoma after surgical resection.
[73]

  

 

 

Fig. (5). PI-88. 

 

VTAs associated with PDGF/PDGFR signal pathway 

The ligands of PDGF family contains five dimeric isoforms (PDGF-AA, -BB, -CC, -DD, and 

-AB), each activating two cognate RTKs of PDGF receptor-α (PDGFR-α) and -β (PDGFR-β) 

[74, 75]
  

 

PDGF/PDGFR pathway plays a significant role in vascularization. The secretion of PDGF-B 

and stimulation of PDGFR-β associated with vascular smooth muscle cells (vSMC) or 

pericytes are crucial events in the process of stabilizing the newly formed vasculature and 

promoting endothelial cell survival.
[76]

 The inhibition of both VEGFR and PDGFR has been 

reported to show potent anti-angiogenic activity in vivo and may be more effective in 

antiangiogenic therapy than inhibition of either alone.
[77]

 Many drugs such as Sorafenib and 

Pazopanib targeting the VEGF/VEGFR signaling pathway inhibit PDGF pathway 

simultaneously. 

 

VTAs directly inhibiting endothelial cell proliferation  

Now that vascular endothelial cell proliferation is the basis of angiogenesis, the inhibition of 

endothelial cell proliferation could be a strategy for arresting tumor growth directly.  

 

Angiostatin and Endostatin 

Angiostatin and endostatin are endogenous inhibitors of endothelial cells, and have been 

found to inhibit endothelial cell proliferation, migration, invasion and vascular 

morphogenesis.
[78, 79]

 Angiostatin and endostatin bind to integrin receptor and other receptors 

on endothelial cells, and reveal antitumor effect via a variety of pathways.
[80]

 Endostatin also 
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stabilizes the adhesions of cell-cell and cell-matrix, and reinforces their junctions to prevent 

cancer from   migrating during angiogenesis.
[81]

 They are effective for treatment of a variety 

of tumors such as lung and breast cancers, and exhibit less toxicity and side effects.
[78, 79]

  

  

There were two main disadvantages identified when these two endogenous inhibitors were 

used as anticancer drugs. Firstly, the optimum dose for antitumor activity was in a narrow 

range of concentration and secondly, they had a very short half-life of only 1-2 hours.
[82]

 One 

of recombinant human endostatins was constructed by conjugating endostatin to Fc domain 

of IgG, and its half-life was extended to more than a week. Meanwhile, the optimum 

antitumor dose of Fc-endostatin is lower than that of endostatin.
[83]

  

 

Endostar 
®
 (Simcere), a modified and recombinant human endostatin, has been approved as 

first-line chemotherapy in patients with advanced NSCLC in China.
[84]

 TNP-470 (22, AGM-

1470) (Fig. (6), a semi synthetic analogue of Fumagillin secreted from Aspergillus fumigatus, 

is reported to inhibit tumor growth and metastasis by suppressing angiogenisis. It was found 

to be effective for the treatment of prostate cancer, breast cancer and other solid tumors with 

low toxicity.
[85, 86]

  

 

 

Fig. (6). TNP-470. 

 

Metronomic chemotherapy 

Certain conventional cytotoxic agents function as antiangiogenic drugs when administered at 

a comparatively low but continuous non-toxic dose or at regular intervals with no prolonged 

disruption.
[87]

 This is called low-dose metronomic chemotherapy. Metronomic regimens have 

potent antitumor effects with less toxicity compared with corresponding maximum tolerated 

dose (MTD) of conventional cytotoxic drugs.
[88]

 Various types of cytotoxic drugs have anti-

angiogenic effects, for instance, Cyclophosphamide, Docetaxel, Vinblastine and the like.
[89]

 

Preclinical studies of metronomic chemotherapy have shown that tumor cell apoptosis is 

preceded by the death of tumor endothelial cells in chemotherapy-resistant tumor models, 
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which indicates that endothelial cells are a primary target of metronomic chemotherapy.
[90]

 

Expression of the endogenous angiogenesis inhibitor Thrombospondin-1 increased 

significantly during the metronomic Cyclophosphamide treatment in several preclinical 

studies.
[91]

 Tumor-induced immune tolerance can also be reduced by administration of 

metronomic Cyclophosphamide.
[92]

 One animal research experiment shows that 

Cyclophosphamide at a MTD dose followed by Cyclophosphamide treatment on a 

metronomic schedule gives antitumor activity superior to either used individually.
[93]

 

Metronomic chemotherapies combined with other antiangiogenic agents are also reasonably 

helpful for anti-cancer treatment. In a phase II clinical trial, co-administration of metronomic 

Cyclophosphamide and Bevacizumab exhibited better antitumor activity than either one.
[94]

  

 

Matrix metalloproteinase inhibitors  

Matrix metalloproteinases (MMPs) are members of zinc-dependent endopeptidases. There are 

currently more than 20 human MMP members that can be divided into two groups based on 

their cellular localization, or into five main groups according to their structural and substrate 

specificity.
[95]

 For a long time, MMPs have simply been assumed to have the ability to 

degrade ECM and promote tumor metastasis by preparing paths for tumor cells to migrate, 

invade and spread to distant secondary areas.
[96]

 In fact, MMPs play an important role in 

tissue repair, angiogenesis and organogenesis by maintaining normal cellular environment  

via regulation of extracellular signaling networks.
[97, 98]

 Not all of MMPs play a key role in 

promoting tumor activity as some subtypes have been found to have   antitumor activity.
[99]

     

 

MMP inhibitors (MMPIs) as anticancer drugs have been developed for more than 25 years. 

Batimastat (23) (Fig. (7) is a first broad-spectrum MMP inhibitor on clinical trial for the 

treatment of cancer.
[100]

  Its phase III clinical trial was ceased due to its low bioavailability. 

Second-generation MMP inhibitors include Marimastat (24), Prinomastat (25), Neovastat 

(26), Tanomastat (27) and Rebimastat (28) 
[101-105]

 (Fig. (7). Unexpectedly second generation 

MMP inhibitors failed to show obvious improvements in cancer therapy in their phase III 

clinical trials. There may be two important reasons for the failure. Firstly, these MMP 

inhibitors with broad-spectrum antitumor activity lacked selectivity and caused severe side 

effects at therapeutic dosage. Secondly, they exhibited satisfactory effectiveness in animal 

experiments, but low bioavailability in humans.
[106]

 In recent years, with more thorough 

understanding of subtypes and physiological activities of MMPs, selective MMP inhibitors 

have been developed for treatment of cancer. SB-3CT (29) (Fig. (7), a thirane derivative, is 

http://www.wjpr.net/


www.wjpr.net                                         Vol 4, Issue 04, 2015.                                            

            

 

252 

Muyaba et al.                                                        World Journal of Pharmaceutical Research 

one of the third-generation of selective MMP inhibitors with selective MMP-2/9 inhibitive 

activity.
[107] 

 

 

Fig. (7). Matrix metalloproteinase inhibitors. 

 

VTAs interfering with endothelial cell adhesion 

Integrins are a family of glycosylated heterodimeric cell surface receptors which bind to 

components of the extracellular matrix (ECM) with adhesive functions, and provide traction 

for cell motility and invasion. They consist of non-covalently bound α- and β-subunits. One 

of 18 α-subunits and one of 8 β-subunits are paired to form 24 different integrins.
[108]

 

Integrins are mediate attachments between cell and surrounding tissues such as adjacent cells 

or ECM. They are important for cells to sense and integrate cues from the extracellular matrix 

by transducing signals for anchorage-dependent survival, growth, etc.
[109]

 Meanwhile, they 

also have effects on cell shape, survival, proliferation, gene transcription and migration.
[110]

 

Integrins are now promising therapeutic targets since they are expressed in tumor cells and 

accelerate tumor proliferation and metastasis.
[111, 112]

 

 

Several integrin antagonists are undergoing clinical trials as anti-angiogenic agents for the 

treatment of cancer. Etaracizumab (Vitaxin, Abegrin 
®
, MEDI-522) is a humanized αvβ3 

integrin monoclonal antibody. It blocks ligands such as vitronectin to bind to αvβ3 integrin 

and results in the inhibition of angiogenesis and metastasis. Its phase II clinical trial for 

malignant melanoma has been completed, but failed to be more effective than agent 
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Dacarbazine as a single agent.
[113]

 Phase II clinical trial of Etaracizumab for prostate cancer 

and colon cancer are still ongoing.
[114]

  

 

Intetumumab (CNTO 95), a monoclonal antibody, inhibits integrins and exhibits both 

antitumor and anti-angiogenic activities. 
[115]

 It has completed phase II clinical study of stage 

IV melanoma, and the results showed that Intetumumab is safe though it failed to improve 

overall survival significantly. 
[116]

 Another phase I clinical trial of Intetumumab is also in 

progress in combination with Docetaxel and Prednisone in metastatic hormone refractory 

prostate cancer patients. 
[117]

 Cilengitide (30, EMD 121974, NSC 707544) (Fig. (8), a cyclic 

Arg-Gly-Asp peptide, can specifically recognize the over-expressed integrin receptor αvβ3 

and αvβ5 in tumor cells or tumor blood vessels. Cilengitide is the first integrin receptor 

antagonist in Phase III clinical trial for treatment of glial cell carcinoma 
[118] 

and   was 

announced by Merck in 2013 not to meet its primary endpoint of prolonging overall survival. 

 

 

Fig. (8). Cilengitide 

 

VTAs associated with unknown mechanism 

Thalidomide (31, Thalomid) (Fig. (9) is a synthetic glutamic acid derivative. In 1961, it was 

withdrawn due to the teratogenicity and neuropathy as a sedative drug typically used to cure 

morning sickness. In 1995, Thalidomide was found to have anti-angiogenic effect and used to 

treat cancer.
[119]

 In 2006, Thalidomide was approved for treatment of multiple myeloma. A 

variety of Thalidomide analogues have been developed such as Lenalidomide (32, CC-5013, 

Revlimid 
®
, Celgene), Pomalidomide (33, CC-4047, Actimid 

®
, Celgene) and CPS49 (34) 

[120]
 (Fig. (9). In 2005, Lenalidomide was approved for treatment of fatal blood disease, 

myelodysplastic syndrome and multiple myeloma.
[121]
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Fig. (9). Thalidomide and its analogues. 

 

Carboxyamidotriazole (35, CAI, NSC609974) (Fig. (10), one of calcium influx inhibitors 

with antiproliferative and antimetastatic activities, is used in the treatment of various cancers. 

Carboxyamidotriazole inhibits calcium uptake, blocks the release of arachidonic acid and 

activates nuclear factor-κB (NFκB) with largely unclear mechanisms.
[122]

 But the phase III 

clinical trial showed that it did not provide a meaningful clinical benefit or an improvement 

in quality of life over placebo in advanced NSCLC.
[123]

 In addition, selective 

cyclooxygenase-2 (COX-2) inhibitors, which were known to have anti-inflammatory, 

antipyretic and analgesic effects, also exert inhibition of tumor angiogenesis.
[124]

 But in two 

phase III clinical trials, COX-2 inhibitor Celecoxib (36) (Fig. (10) failed to show any survival 

benefit for treatment of NSCLC.
[125, 126]

 It has been reported that the combination of 

Celecoxib with chemotherapy drugs will increase the likelihood of cardiovascular adverse 

reactions seriously.
[127]

 

 

 

Fig. (10). CAI and Celecoxib 
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Limitation and new opportunities for VTAs 

Although anti-angiogenic antibodies and small molecules significantly prolong overall 

survival of cancer patients, there are still many limitations such as resistance and 

monotherapeutic ineffectivity. Intrinsic resistance and acquired resistance to VTAs are 

notably clinical problems.
[128]

 Intrinsic resistance mainly occurs in tumor cells which obtain 

oxygen and nutrients from existing blood vessels in vasculature-rich organs like lungs, brain 

and colon.
[129]

 Neovascularization is not necessary for tumors in these organs. Acquired 

resistance emerges as a result of crosstalks among signaling pathways which regulate the 

vasculature. For example, bFGF will be up-regulated within the tumor after treatment with 

anti-VEGFR antibody therapy.
[130]

 It is possible that many induced growth factors such as 

PDGFR, EGFR and c-kit act in a synergistic manner to prompt tumor angiogenesis. Acquired 

resistance can also be obtained by gene mutations of tumor endothelial cells.
[131]

 

Angiogenesis has also been found to be a critical function for the expansion and metastasis of 

tumor and it is influenced by the tumor microenvironment.
[132]

 VEGF signaling pathway has 

been identified to be the most prominent pro-angiogenic molecule which is the key 

component in both early and late phase angiogenesis. It is highly produced by tumor cells and 

its receptors can be found expressed on tumor and stromal cells. The high expression of 

VEGF is an independent factor predicting poor prognosis in different types of 

tumors.Therefore many components of the VEGF pathway have been major targets in cancer 

therapy.
[133]

 FGFR pathway is also one of the signaling pathways that has been implicated in 

endometrial cancer. It has been shown to be mutated in a subject of endometrial tumors and 

inhibition of FGFR pathway with TKI leads to reduced cell growth and increased antitumor  

activity in endometrial tumor models. Based on such observation, agents targeting EGFR are 

being tested on patients with advanced, metastatic and recurrent endometrial cancer.
[134]

  

 

To overcome resistance and improve the treatment outcome, combination therapy is 

promising good results. As discussed above, VTAs predominantly inhibit neovascularization 

and show greatest activity at the tumor periphery. A combination of Vascular disrupting 

agents (VDAs) which are highly effective at the tumor core with  VTAs is likely to lead to 

higher efficacy as the two will have spartial cooperation and non overlapping 

toxicities.
[135,136] 

 

The rationale of such combination is supported by preclinical data. In a preclinical study, a 

combination of VDAs like fosbretabulin ,OXi4503 or vadimezan with bevacizumab showed a 

significantly enhanced tumor response in the treatment of human tumor xenografts.
[137]
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As some antiangiogenic agents act by normalizing the existing tumor vasculature which is 

abnormal in function and morphology, they will increase tumor oxygenation and lead to 

better ‘normalization’ window.
[138]

 This vascular normalizing principle has been used as a 

strategy to improve the penetration of chemotherapeutics and overcome resistance. This 

process also increases sensitivity of tumor cells to radiation as oxygen is vital for the 

radiation-induced DNA damage.
[139]

 In order to achieve increased drug penetration, 

distribution and radio-sensitivity as a result of vascular normalization, it is important to 

administer the VTA and the effecter chemotherapeutic agent in a precise sequence and 

timing. A study by Winkler et al. showed that the synergistic tumor growth inhibition 

obtained by combining anti-VEGFR-2 antibody DC101 and radiation therapy is observed in 

tumor-bearing mice only when radiation therapy is administered 4 to 6 hours after initiation 

of antibody therapy.
[140]

   

 

In a 2012 clinical trial on patients with advanced head and neck cancer, a combination of 

Bevacizumab, erlotinib and chemo radiation found a 96% clinical complete response after 

concurrent chemo-radio therapy. Another preclinical study using Vandetanib and radio-

therapy in EGFR positive and EGFR null human head and neck tumor xenografts showed 

that such a combination had enhanced anti- tumor activity.
[141]

 

 

CONCLUSIONS AND FUTURE PERSPECTIVES 

The use of VTAs is an important aspect for fighting against cancer. Vascular inhibitors have 

been developed for decades, and many significant advances have been made. On the other 

hand, the limited efficacy of these drugs remains a challenging problem. Besides, toxicity and 

resistance are still far from satisfaction.
[10]

  

 

In recent years, several VTAs such as VEGF-neutralizing antibody Bevacizumab and many 

mult-targeted RTK inhibitions like Sorafenib, Sunitinib, Pazopanib, Cabozantinib and 

Axitinib have been approved. Their mechanisms have just revealed a small part and still need 

farther exploration. Many patients with metastaic tumor have either refractory or acquired 

resistance to VTAs. VTAs only induce delayed tumor growth but not long-term remission. 

Besides, clinical studies showed that VTAs combined with chemotherapeutic drugs may 

cause unpredictable toxicities and side effects.
[142]

 Recent research indicates that VEGF 

inhibitors increase the risk of tumor metastasis in mouse models.  
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How will the therapeutic strategies targeting the tumor vasculature be improved from now 

on? One consideration is rational or optimized use of current VTAs which includes drug 

combination, dose regimen design, administration schedule and duration. A deeper 

understanding of different modes of tumor vascularization such as sprouting angiogenesis, 

vasculogenesis, intussusception, co-option and vascular mimicry is needed and this can be 

correlated with the different dosage regimen or administration schedule. Furthermore, an 

increased knowledge of VTAs mechanism of action is required for the proper design and 

administration of these drugs. On the other hand, combination therapy is a useful strategy and 

more potent to eradicate the residual tumor vessels than monotherapy.
[143]

 Meanwhile, the 

recent research progress in tumor vasculature showed that vessel normalization will be a new 

therapeutic strategy for anticancer treatment. Since tumor vessels are abnormal in all aspects 

of structure and function 
[95]

, it is possible for tumor invasion and metastasis to become more 

aggravating due to the excessive vascular inhibition and blockade through VTAs. A genetic 

research concluded that a streamlined monolayer of phalanx endothelial cells has the activity 

of reducing tumor cell invasiveness, intravasation and metastasis by providing a more 

impenetrable barrier for intravasating tumor cells without accelerating tumor growth.
[79]

 The 

finding offers a new prospective possibility of anticancer strategy targeting at tumor 

vasculature. More novel anticancer drugs including but not limited to VTAs will be 

developed to improve the effectiveness of cancer treatment in the future.  
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