

Volume 3, Issue 6, 935-942.

Research Article

ISSN 2277 - 7105

EVALUATION OF ANTIBACTERIAL ACTIVITY OF SOME MEDICINAL PLANTS

Ansar M. Patel^{*1}, Dr. Rudraprabhu. V. Savadi².

¹Research Scholar, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu,

Rajasthan- 333001, India.

²Principal, Arvind Gavali College of Pharmacy, Satara, Maharashtra, India.

Article Received on 14 June 2014,

Revised on 09 July 2014, Accepted on 04 August 2014

*Correspondence for Author Ansar M. Patel Research Scholar, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan- 333001 India.

ABSTRACT

The objective of the present study was to determine the antibacterial activity of ethanolic and aqueous extracts of *Erythrina indica* leaves, *Bergenia ciliata* rhizome and *Cissampelos pareira* stem. Antibacterial activities of above extracts were evaluated against five pathogenic bacterial strains i,e. *Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli* and *Salmonella typhi*. Testing was done by agar cup plate method using sterile nutrient agar. Zone of inhibition of ethanolic and aqueous extracts of above three plants was compared with that of standard Ampicillin prepared in DMSO. Ethanolic extracts of *Erythrina indica, Bergenia* ciliata *and Cissampelos pareira* shows greater antibacterial activity as compared to their aqueous extracts.

KEYWORDS: Antibacterial activity, Bacillus cereus, *Erythrina indica*, Agar cup plate method.

INTRODUCTION

Infectious diseases are the most important causes as far as mortality rate is concerned¹. Now a days due to increase in pollution, increased population and changed environmental conditions the bacterial and fungal infections are commonly observing everywhere. This factor causes less immunogenicity in human beings. Prolonged treatment with several antimicrobial drugs develops resistance in microorganism to the allopathic drugs & also increased toxicity in human being as well as animals². The above data inspired us to discover a new herbal medicine, which can act as an excellent antimicrobial molecule to treat various microbial infections³. The literature serve revealed that *Bergenia ciliata, Cissampelos pareira*

and *Erythrina indica* possess antimicrobial activity⁴⁻⁶. But there is no any scientific data available till now. So it was our aim to study the antimicrobial profile of *Bergenia ciliata*, *Cissampelos pareira* and *Erythrina indica* by using different microbial species.

MATERIALS AND METHODES

Plant Collection and Authentication

All **crude drugs** (*Erythrina indica* leaves, *Bergenia ciliata* rhizomes *and Cissampelos pareira* stems) were provided by **S.G. Phyto Pharma Pvt. Ltd. Kolhapur, Maharashtra.** which were authenticated as per Ayurvedic standards as well as our Pharmacognostic authentification was also included to establish proper selection.

Material

- 1. Nutrient agar (Hi Media)
- 2. Nutrient broth
- 3. Culture plates
- 4. Sterile cork borer
- 5. Ampicillin (Merck)
- 6. 70% ethanol (Merck)
- 7. Autoclave
- 8. Incubators
- 9. Wire loop
- 10. Bacterial Test Cultures

Preparation of inoculums

The suspension of all organisms were prepared by inoculating single colony of the strain in 20 ml of nutrient broth in conical flask and incubated at 37° C for 24 hours to activate the strain. The suspension is adjusted such that it contained approximately 1 x 10^{6} cells/ml. It was obtained by calculating the cells by Neubers chamber.

Culture medium

The medium was prepared by dissolving 13 gm of nutrient broth in 1000ml of distilled water adjusting the pH to (7.3 ± 0.2) and finally subjecting it to sterilization in an autoclave at 121° C for 15 min.

Microorganisms

Standard cultures of following microorganisms were obtained from SG. Phyto Pharma Pvt.Ltd. Kolhapur, Maharashtra. The microorganisms were identified by staining techniques.The organisms were maintained by sub culturing at regular intervals in nutrient agar medium.

<u>Gram + Ve Bacteria:</u>	Staphylococcus aureus
	Bacillus cereus
	Bacillus subtilis
Gram - Ve Bacteria:	Escherichia coli
	Salmonella typhi

Determination of zone of inhibition by Agar cup plate method

The antibacterial activity of ethanolic and aqueous extract of *Erythrina indica* leaves, *Bergenia ciliata* rhizome and *Cissampelos pareira* stem was performed using Agar cupplate method. 20ml of sterile nutrient agar medium was poured into sterile Petri Plates (10x10 cm), added 0.1 ml of the above diluted culture in to each plate and the plates were dried for 30 minutes at 37°C and allowed to solidify. Bores of 6 mm (approximate) diameter were made with sterile cork borer in the inoculated agar. The bores were filled with the plant extracts (2.5 mg/ml & 5mg/ml). Ampicillin (1 mg/ ml) and 70% ethanol were used as standard and control. Then the Petri Plates were kept in refrigerator for 2 hrs to allow uniform diffusion of plant extracts into agar medium. Finally all the plates were incubated for 48 hours at 37°C. At the end of incubation period, the clear zone of inhibition around the bores was measured in millimeter (mm).

Methods

Preparation of extracts

Air dried coarsely powdered plant materials of (*Erythrina indica, Bergenia ciliata & Cissampelos pareira*) were extracted with water for 48 hrs by maceration and with ethanol (95%) using soxhlet apparatus for 4-5 hrs. Both the extracts were concentrated at low pressure by rotary flash evaporator and finally air-dried.

RESULT AND DISCUSSION

Plants and their extracts have immense potential for the management and in the treatment of bacterial infections. The phyto-medicines as a antibacterial agents are not only cheap and affordable but are also safe as hyper sensitive reactions are rarely encountered with the use of

these agents. However, the discovery and use of allopathic drugs led to a remarkable decline in the popularity of herbal medicines used in the therapy.

Antibacterial Activity of *Erythrina indica, Bergenia ciliata , Cissampelos pareira* Extract The results of zone of inhibition of the ethanolic and aqueous extracts of *Erythrina indica, Bergenia ciliata , Cissampelos pareira* and comparison with standard antibiotic Ampicillin were recorded in Table 1,2,3,4,5 & 6 respectively. The result shows that the ethanolic extract of *Erythrina indica, Bergenia ciliata , Cissampelos pareira* at concentration 5mg/ml shows excellent antibacterial activities in comparison to concentration 2.5 mg/ml. It also indicates that all ethanolic extracts shows antibacterial activity towards all the five investigated pathogenic bacteria. In case of *Bergenia ciliata* ethanolic extract the highest antibacterial activity was found towards *Escherichia coli* and *Bacillus cereus* than the remaining bacteria. While in case of ethanolic extracts of *Erythrina indica and Cissampelos pareira* the highest antibacterial activity was found towards *Staphylococcus aureus, Salmonella typhi* & *Bacillus subtilis, Escherichia coli* .The extract shows potential antibacterial properties comparable with that of standard Ampicillin against the organisms tested.

	Diameter of Zone of Inhibition in mm			
Postorio	Aqueous Extract of Bergenia ciliata		Ampicillin	
Bacteria	2.5mg/ml	5mg/ml	1mg/ml	
Staphylococcus aureus	08	12	32	
Bacillus cereus	12	14	26	
Bacillus subtilis	07	14	30	
Escherichia coli	08	10	24	
Salmonella typhi	11	15	20	

Table 1. Antibacterial Activity Of Aqueous Extract of Bergenia ciliata Rhizome.

Table 2.	Antibacterial	Activity	Of Ethanolic	Extract of	Bergenia	ciliata Rhizome.
					0	

	Diameter of Zone of Inhibition in mm			
Postoria	Ethanolic Extra	Ampicillin		
Dacteria	2.5mg/ml	5mg/ml	1mg/ml	
Staphylococcus aureus	15	30	32	
Bacillus cereus	13	28	26	
Bacillus subtilis	17	27	30	
Escherichia coli	15	26	24	
Salmonella typhi	11	19	20	

	Diameter of Zone of Inhibition in mm			
Destaria	Aqueous Extract of <i>Erythrina indica</i> Ampicill			
Dacteria	2.5mg/ml	5mg/ml	1mg/ml	
Staphylococcus aureus	15	20	32	
Bacillus cereus	10	18	26	
Bacillus subtilis	11	19	30	
Escherichia coli	11	20	24	
Salmonella typhi	14	16	20	

Table 3. Antibacterial Activity Of Aqueous Extract of *Erythrina indica* Leaves.

Table 4. Antibacterial Activity Of Ethanolic Extract of *Erythrina indica* Leaves.

	Diameter of Zone of Inhibition in mm			
Bastoria	Ethanolic Extract of	olic Extract of <i>Erythrina indica</i>		
Dacteria	2.5mg/ml	5mg/ml	1mg/ml	
Staphylococcus aureus	20	35	32	
Bacillus cereus	16	22	26	
Bacillus subtilis	16	28	30	
Escherichia coli	19	21	24	
Salmonella typhi	17	22	20	

Table 5. Antibacterial Activity Of Aqueous Extract of Cissampelos pareira Stem.

	Diameter of Zone of Inhibition in mm			
Postaria	Aqueous Extract of Ca	issampelos pareira	Ampicillin	
Dacteria	2.5mg/ml	5mg/ml	1mg/ml	
Staphylococcus aureus	09	15	32	
Bacillus cereus	09	10	26	
Bacillus subtilis	10	14	30	
Escherichia coli	07	13	24	
Salmonella typhi	08	12	20	

Table 6. Antibacterial Activity Of Ethanolic Extract of Cissampelos pareira Stem.

	Diameter of Zone of Inhibition in mm			
Pastoria	Ethanolic Extract of	Cissampelos pareira	Ampicillin	
Dacteria	2.5mg/ml	5mg/ml	1mg/ml	
Staphylococcus aureus	15	26	32	
Bacillus cereus	14	29	26	
Bacillus subtilis	12	31	30	
Escherichia coli	17	28	24	
Salmonella typhi	15	18	20	

Graff No: 1

Graff No:2

Antibacterial Activity Of Ethanolic Extract of Bergenia ciliata Rhizome.

Graff No: 3

Bacteria

Graff No:4

Antibacterial Activity Of Ethanolic Extract of Erythrina indica Leaves.

Graff No:5

Antibacterial Activity Of Aqueous Extract of Cissampelos pareira Stem.

Graff No:6

CONCLUSION

The antibacterial activity of ethanolic extracts of all the three medicinal plants (*Erythrina indica, Bergenia ciliata & Cissampelos pareira*) were promising against *Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli* and *Salmonella typhi*. It is inhibiting both gram positive and gram negative bacteria. The antibacterial activity of the extracts was done on some standard and wild pathogenic bacterial strains such as *Staphylococcus aureus, Bacillus cereus, Bacillus subtilis Escherichia coli* and *Salmonella typhi*. The testing was done by the agar cup plate method using sterile top agar. Zone of inhibition of extract (2.5mg/ml and 5mg/ml) was compared with that of standard Ampicillin (1 mg/ml) prepared in DMSO. Ethanolic extracts of *Erythrina indica, Bergenia ciliata & Cissampelos pareira* shows greater antibacterial activity as compared to their water extracts and could be the budding source to develop new antimicrobial agents.

REFERENCES

- Anderson K.M., Free radicals and reactive oxygen programmed cell death, Med. Hypothesis, 1999, 52, 451-63.
- Chun-Zhao Liu, Yu-Chun Wang, Chen Guo, Fan Ouyang, He-Chun Ye and Guo-Feng Li, Production of artemisinin by shoot cultures of *Artemisia annua* L. in a modified inner loop mist bioreactor, Plant Science, 1998, 135(2), 211-217.
- Chun-Zhao Liu, Chen Guo, Yu-Chun Wang and Fan Ouyang, Comparison of various bioreactors on growth and artemisinin biosynthesis of *Artemisia annua* L. shoot cultures, Biochemistry, 2003, 39(1),45-49
- Hegde N (1993), Cultivation and uses of *Erythrina variegata* in western India in Westley SB and Powell MH; eds. Palahi (USA): NFRA.
- Kirthikar KR and Basu BD (2005), Indian Medicinal Plants. Vol. I. Delhi: International book distributors.
- Nadkarni KM (2006), Indian Medicinal Plants and Drugs with Their Medicinal Properties and Uses. Delhi; Srishthi book distributors.