

Volume 12, Issue 9, 1204-1231.

Review Article

ISSN 2277-7105

A REVIEW ON ANALYTICAL METHOD DEVELOPMENT FOR SIMULTANEOUS ESTIMATION AND VALIDATION OF FINASTERIDE AND TADALAFIL

Tejal K. Dabhi¹* and Vipul M. Vaghela²

¹Department of Pharmaceutical Quality Assurance, ²Department of Pharmaceutical Chemistry, A. R. College of Pharmacy and G. H. Patel Institute of Pharmacy, Vallabh Vidyanagar, Gujarat, India.

Article Received on 15 April 2023,

Revised on 05 May 2023, Accepted on 25 May 2023 DOI: 10.20959/wjpr20239-28324

*Corresponding Author Tejal K. Dabhi Department of Pharmaceutical Quality Assurance, A. R. College of Pharmacy and G. H. Patel Institute of Pharmacy, Vallabh Vidyanagar, Gujarat, India.

ABSTRACT

Finasteride is a 5α -reductase inhibitor and therefore an antiandrogen. It works by decreasing the production of dihydrotestosterone (DHT) by about 70%, including in the prostate gland and the scalp. In addition to DHT, finasteride also inhibits the production of several anticonvulsant including allopregnanolone, and neurosteroids rostanediol, and THDOC (Tetrahydroxycorticosteroid). Finasteride has been used for the treatment of symptomatic benign prostatic hyperplasia (BPH) in men with an enlarged prostate and for the treatment of male pattern hair loss (androgenetic alopecia) in men. Finasteride may improve the symptoms associated with BPH such as difficulty urinating, getting up during the night to urinate, hesitation at the start and end of urination, and decreased urinary flow. Tadalafil is a PDE5 inhibitor which increases blood flow to the penis. It also dilates blood vessels in the

lungs, which lowers the pulmonary artery pressure. Used to treat erectile dysfunction (ED), benign prostatic hyperplasia (BPH), and pulmonary arterial hypertension. Combination of tadalafil and finasteride is a safe, effective, and well tolerated treatment for BPH. This combination may be particularly effective in reducing treatment-related sexual adverse events associated with 5α -reductase inhibitor. This review includes various analytical methods for simultaneous estimation of finasteride and tadalafil. Various analytical methods were reported for determination of finasteride and for Tadalafil in bulk drug or in combination with other drugs. Till date there is only one UV spectrophotometric method and

only one LC/MS method was reported for Finasteride and tadalafil in combined dosage form. This review can be used for further analytical method development.

KEYWORDS: Benign Prostatic Hyperplasia (BPH), Finasteride, Tadalafil, Analytical Methods, Development, Validation.

INTRODUCTION

Benign prostatic hyperplasia (BPH) is characterized by progressive enlargement of the prostate gland, which results in obstruction of urine outflow from the bladder. It is a common condition as men get older. An enlarged prostate gland can cause also cause bladder, urinary tract or kidney problems. The prostate gland is located beneath your bladder. The tube that transports urine from the bladder out of your penis (urethra) passes through the center of the prostate. When the prostate enlarges, it begins to block urine flow. Most men have continued prostate growth throughout life. In many men, this continued growth enlarges the prostate enough to cause urinary symptoms or to significantly block urine flow.^[1]

The combination of finasteride and tadalafil was approved by FDA in December 2021 with brand name ENTADFI to treat urinary tract symptoms caused by an enlarged prostate, also called BPH with low potential for adverse sexual side effects.

Finasteride is a steroidal molecule. Finasteride is a Type 2, 5 alpha reductase inhibitor. Type 2, 5 alpha reductase is an intracellular enzyme that converts the androgen testosterone into 5a-dihydrotestosterone hormone responsible for prostate growth. It has anti-androgenic properties. Finasteride prevents the peripheral conversion of testosterone to dihydrotestosterone (DHT), which lowers serum DHT levels, increases hair development, and slows hair loss by bringing down the concentration of DHT in the scalp to levels found in hairy scalps.^[2]

Tadalafil is a selective phosphodiesterase 5 (PDE5) inhibitor which is used to treat mild to severe erectile dysfunction in man. It is an impotence agent. Phosphodiesterase 5 (PDE5) inhibitor is responsible for the degradation of cGMP in the corpus cavernosum located around the penis. Penile erection during sexual stimulation is caused by increased penile blood flow resulting from the relaxation of penile arteries and corpus cavernosal smooth muscle. This response is mediated by the release of nitric oxide (NO) from nerve terminals and endothelial cells, which stimulates the synthesis of cGMP in smooth muscle cells. Cyclic

GMP causes smooth muscle relaxation and increased blood flow into the corpus cavernosum. The inhibition of phosphodiesterase type 5 (PDE5) by tadalafil enhances erectile function by increasing the amount of Cgmp.^[3]

Physical and Chemical properties

1. Finasteride

Finasteride is white solid crystalline powder. Its chemical name is 17 beta-(N-tertbutylcarbamoyl)-4-aza-5 α -androst-1-en-3-one. Its molecular weight is 372.6 gm/mol. Its molecular formula is C₂₃H₃₆N₂O₂. Freely soluble in ethanol and Methylene Chloride and in dichloromethane; Practically insoluble in water. Its melting point is near 257 °C. Its log P (partition co-efficient) is 3.03. It is official in Indian Pharmacopoeia, United States Pharmacopoeia and Japan Pharmacopoeia.^[4,5,6]

Figure 1: Chemical structure of finasteride.

2. Tadalafil

Tadalafil is solid white or almost white powder. Its chemical name is (6R,12aR)-6-(1,3-benzodioxol-55-yl)-2-methyl-2,3,6,7,12,12a-hexahydropyrazinol[1',2':1,6]-pyrido[3,4-b] indole-1,4-dion. Its molecular weight is 389.4 gm/mol. Its molecular formula is C₂₂H₁₉N₃O₄. Freely soluble in dimethyl sulfoxide; slightly soluble in dichloromethane; Practically insoluble in water. Its melting point is near 302-303 °C. Its log P (partition co-efficient) is 2.89. It is official in Indian Pharmacopoeia and United States Pharmacopoeia.^[4,5,7]

Figure 2: Chemical structure of tadalafil.

Introduction to analytical method Development and Validation

Analytical chemistry is the study of separation, quantification and chemical components identification of natural and artificial materials constituted with one or more compounds or elements. Analytical chemistry is separated into two main categories, qualitative analysis that is to say the identification with regard to the chemical components exist in the sample, whereas quantitative analysis estimates the amount of certain element or compound in the substance i.e., sample.

Drug analysis is the basis for the determination of the product. Due to potential concerns in the ongoing and widespread use of these medications, reports of additional side effects/ new toxicity, the development of patient resistance, and the introduction of better medications by competitors, very often, there is a time lag between the date of introduction of a drug in to the market to the date of its inclusion in pharmacopeia's. Under these conditions, standard and analytical procedures for these drugs may not be available in pharmacopeias. Therefore, it becomes necessary to develop new analytical methods for such drugs.

The analytical method development and validation is essential for analytical method development and tested extensively. Analytical method validation is establishing documented evidence which provides a high degree of assurance that specific processes consistently produce a product meeting its predetermined specifications and quality attributes. The objective of validation of an analytical procedure is to demonstrate that it is suitable for its intended purpose. The validation parameters which are tested include specificity, linearity, accuracy, precision, range, detection limit, quantization limit, and robustness.^[8,9]

Various analytical methods like Spectrophotometric, RP- HPLC and HPTLC were reported for estimation of finasteride in bulk and in combination with other drugs like Minoxidil, Tamsulosin, Depoxetin etc. Similarly, for estimation of Tadalafil, various methods like spectrophotometric, HPLC, and HPTLC methods were reported in bulk and in combination with other drugs like Tamsulosin, Depoxetin, Mecitentan, Silodosin etc. Till date, only one spectrophotometric method and one LC-MS/MS method were reported for simultaneous estimation of Finasteride and Tadalafil in combined dosage form. There is no HPLC or HPTLC method was reported for simultaneous estimation of Finasteride and Tadalafil combined dosage form.

Literature review of finasteride

> Pharmacopeial methods for estimation of finasteride

Sr. No.	Drug/ Formulation	Method	Official in	Description	Ref. No.
1.	Bulk drug	HPLC	IP 2018	Stationary phase: A stainless steel column 25 cm x 4.6 mm packed with base deactivated end capped octadecylsilane bonded to porous silica or ceramic micro particles (5 μm). Mobile phase: A mixture of 10 volumes of acetonitrile, 10 volumes of tetrahydrofuran and 80 volumes of water. Flow rate: 1.5 ml/min Wavelength: 210 nm	[4]
2.	Tablet	HPLC	IP 2018	 Stationary phase: A stainless steel column 5 cm x 4.6 mm packed with octadecylsilane bonded to porous silica (3 μm). Mobile phase: A mixture of 42 volumes of water and 58 volumes of acetonitrile. Flow rate: 1.5 ml/min Wavelength: 220 nm 	[4]
3.	Tablet	HPLC	IP 2018	 Stationary phase: A stainless steel column 25 cm x 4.0 mm packed octadecylsilane bonded to porous silica (5 μm). Mobile phase: A mixture of 10 volumes of acetonitrile, 10 volumes of tetrahydrofuran and 80 volumes of water. Flow rate: 1.5 ml/min Wavelength: 210 nm 	[4]
4.	Tablet	HPLC	IP 2018	 Stationary phase: A stainless steel column 10 cm x 4.6 mm packed octadecylsilane bonded to porous silica (5 μm). Mobile phase: A mixture of equal volumes of acetonitrile and 0.0025 M of orthophosphoric acid. Flow rate: 1.5 ml/min Wavelength: 240 nm 	[4]
5.	Bulk drug	LC	USP 2019	Stationary phase: 4.6 mm × 30 cm; 4 μm packing L1 Mobile Phase: Filtered and degassed mixture of water: tetrahydrofuran: acetonitrile (8:1:1	[10]

				v/v/v)	
				Flow rate: 1.5 ml/min	
				Wavelength: 210 nm	
				Column temperature: 60 °C	
				Injection volume: about 15 µl	
				Stationary phase: 3.0 mm × 3.0	
				cm; 3 µm packing L7	
				Mobile Phase: Filtered and	
6	Dull drug		USP	degassed mixture of water:	[10]
0.	Duik ulug	LC	2019	tetrahydrofuran (4:1 v/v)	
				Flow rate: 3 ml/min	
				Wavelength: 215 nm	
				Injection volume: about 10 µl	
				Stationary phase: 4.6 mm × 15	
				cm; packing L11	
				Mobile Phase: Filtered and	
			LICD	degassed mixture of acetonitrile:	
7.	Tablet	LC	USP	water (11:9 v/v)	[10]
			2019	Flow rate: 1.5 ml/min	
				Wavelength: 220 nm	
				Column temperature: 45 °C	
				Injection volume: about 100 µl	
				Stationary phase: 4.6 mm × 10	
				cm; 4 µm packing L1	
				Mobile Phase: Filtered and	
				degassed mixture of 2.5 mm	
0	T 11 /		USP	phosphoric acid: acetonitrile (1:1	[10]
8.	Tablet	LC	2019	v/v)	
				Flow rate: 1.5 ml/min	
				Detection: 240 nm	
				Column temperature: 45 °C	
				Injection volume: about 20 µl	
				Stationary phase: 0.25 m × 4 mm	
				end capped octadecylsilyl silica gel	
				Mobile Phase: Acetonitrile:	
				Tetrahydro furan: Water (10:10:80	[11]
9.	Bulk drug		BP 2010	v/v/v)	[]
				Flow rate: 1.5 ml/min	
				Column temperature: 60 °C	
				Injection volume: 15 µl	

> Reported method for estimation of finasteride

Sr. No.	Method	Description	Ref. No.
1.	Validated HPTLC method for the simultaneous determination of alfuzosin, terazosin, prazosin, doxazosin and finasteride in	Stationary Phase: Precoated TLC silica gel aluminium plates 60F ₂₅₄ Mobile Phase: Methylene chloride: n- hexane: Methanol (8.8:0.3:0.9 v/v/v) R _f : 0.69	[12]

	pharmaceutical formulations	Wavelength: 254 nm	
		Stationary Phase: TLC plates pre-	
	Stability Indicating Method	coated with silica gel 60 F_{254} (10 cm \times	
	Development and Validation	10 cm with 250 mm layer thickness)	
2.	of Finasteride by High-	Mobile Phase: chloroform-methanol	[13]
	Performance Thin-Layer	(8:2 % v/v)	
	Chromatography Studies	R_f: 0.57	
		Wavelength: 210 nm	
		Stationary Phase: ODS C18 reversed	
	Determination of Finasteride	phase column	
	in Tableta by High	Mobile Phase: Methanol: Water (80:20	
3.	Derformance Liquid	v/v)	[14]
	Chromatography	Retention time: 6.1 min	
	Chromatography	Wavelength: 225nm	
		Flow rate: 1 mL/min	
		Stationary Phase: C18 column, Inertsil	
	Development and validation	ODS 3v (C8, 4.6×250mm, 5µm.)	
	of a RP- HPLC method for	Mobile Phase: Acetonitrile: Water	
4.	determination of finasteride	(60:40 v/v)	[15]
	in pharmaceutical dosage	Retention time: 3.71min	
	forms	Wavelength: 254 nm	
		Flow rate: 1.10 ml/min	
		Stationary Phase: Shimpak C8 column	
		(5µm, 15.0 cm x 4.6 mm)	
	LC determination of	Mobile Phase: Acetonitrile: Water	
5.	finasteride and its application	(95:05 v/v)	[16]
	to storage stability studies	Retention time: Less than 10 min	
		Wavelength: 210 nm	
		Flow rate: 0.7 ml/min	
		Stationary Phase: Phenomenex C18	
		column (150 mm x 4.6 mm, 5.0 μ	
		particle size)	
	Rapid Analysis of Finasteride	Mobile Phase: 0.02% formic acid (in	[17]
6.	in Bulk and Formulations by	water): methanol in the ratio of 20:80	[1/]
	Rp-HPLC-PDA Method	(v/v)	
		Retention time: 3.4 min	
		Wavelength: 220 nm	
		Flow rate: 1mL/min	
	A Stability-Indicating HPI C	Stationary Phase: C18 column	
	Method to Determine	Mobile Phase: Methanol: Water (70: 30	[10]
7.	Finasteride in A Tablet	v/v)	[18]
	Formulation	Wavelength: 210 nm	
		Flow rate: 1 mL/min	

8.	A Stability Indicating UPLC Method for Finasteride and Its Related Impurities	Stationary Phase: Waters ACQUITYTM UPLC BEH Phenyl Column (150 mm × 2.1 mm, 1.7 μm) Mobile Phase: Solution A and B as mobile phase. The solution A Contains 2.5 mM ortho phosphoric acid (Buffer) and solution B contains a mixture of acetonitrile and water in the ratio of (90:10 v/v) Wavelength: 210nm	[19]
9.	Development and Validation of UV Spectrophotometric Method for the Estimation of Finasteride in Tablets	Solvent: Dichloromethane Wavelength: 254 nm Linearity:5 – 25 μ g/mL R ² :0.9986 LOD: 1.138 μ g/ml LOQ: 3.448 μ g/ml % Recovery: 98.82 – 102.11%	[20]

> Reported methods for estimation of finasteride with other drugs

Sr. No.	Method	Description	Ref. No.
1.	HPTLC Method Validation for simultaneous determination of Tamsulosin Hydrochloride and Finasteride in Bulk and Pharmaceutical Dosage Form	Stationary Phase: Precoated silica gel aluminium plate 60 F (20 cm x 10 cm with 0.2 mm thickness)Mobile Phase: Toluene: n-propanol: Triethylamine (3.0:1.5:0.2 v/v)Rf: Finasteride: 0.60 Tamsulosin Hydrochloride: 0.35 Wavelength: 190 - 400 nm	[21]
2.	Stability Indicating Planar Chromatographic method for Estimation of Minoxidil and Finasteride Combination used in the treatment of Hair loss	Stationary Phase: HPTLC plates precoated with silica gel 60 F_{254} Mobile Phase: n-butanol: TEA (10:0.1 v/v) R_f : Finasteride: 0.63 ± 0.65 Minoxidil: 0.22 ± 0.24 Wavelength: 223 nm	[22]
3.	Simultaneous Estimation of Finasteride and Tamsulosin Hydrochloride in Pharmaceutical Dosage Forms by UV Spectrophotometry, RP HPLC and HPTLC	Method: HPTLCStationary Phase: HPTLC Silica gel $60F_{254}$ precoated (Merck)Mobile Phase: Toluene: Chloroform:Methanol: Triethylamine (7:2:1:2 $v/v/v/v$) R_f :Finasteride: 0.35Tamsulosin Hydrochloride: 0.78Wavelength: 230nm	[23]

		Method · RP_HPI C	
		Stationary phase: C18 (250 y 4 6mm	
		Stationary phase. C10 (250 x 4.0mm,	
		Mabila phase: A cotonitrile: Buffer	
		adjusted to pH 3 (60:40 y/y)	
		$\mathbf{W}_{\text{ovelongth}} = 220 \text{ nm}$	
		Flow as for 0. Section in	
		Flow rate: 0.8ml/min	
		Method: HPTLC	
		Stationary Phase: silica gel 60 F ₂₅₄	
		Mobile Phase: g toluene/ methanol/	
		triethylamine (9: 1.5: 1 v/v/v)	
		R _f :	
		Finasteride: 0.65	
		Tamsulosin Hydrochloride: 0.36	
		Wavelength: 270nm	
		Method: RP-HPLC	
		Stationary Phase: A Phenomenex C18	
		column	
		Mobile Phase: Methanol/ $0.02 \text{ mol } L^{-1}$	
	Validated RP-HPLC and TLC methods for simultaneous estimation of tamsulosin hydrochloride and finasteride in combined dosage forms	ammonium acetate buffer/triethylamine	
		(79.9, 20, 0.1 V/V/V) (nH 9.2)	
		Wavelength: 235nm	52.43
4.		Flow rate: 1 mL/min	[24]
		Mothod: Sportroscopic mothod	
		A have have a Mathad	
		Q- Absorbance Method: Solverte Etherol 050(w/w Distilled	
		Solvent: Ethanol 95% V/V: Distilled	
		water $(30:50 \text{ V/V})$	
		Wavelength: 21/./ nm	
		Linearity:	
		Finasteride: 5-30µg/ml	
		Tamsulosin Hydrochloride:5-30µg/ml	
		R ² :	
		Finasteride: 0.35	
		Tamsulosin Hydrochloride:0.78	
		% Recovery:	
		Finasteride:100.339%	
		Tamsulosin Hydrochloride: 99.397%	
		Stationary Phase: C18 (150mm x	
		4.6mm i.d., 5µm particle size)	
	Simultaneous estimation of	Mobile Phase: Buffer: Acetonitrile:	
	finasteride and tamsulosin	Water (15:75:10 v/v)	
5.	hydrochloride by reverse phase	Retention time:	[25]
	HPLC in bulk and	Finasteride: 2.325 min	
	pharmaceutical dosage form	Tamsulosin Hydrochloride: 4.296 min	
		Wavelength: 245 nm	
		Flow rate: 0.8 ml/min	
	Simultaneous Estimation of	Stationary Phase C18 column (150 v	
	Finasteride and Tameulosin	4.6 mm 5 m	10.0
6.	Hydrochloride in Combined	Mohile Phase Mathanol: Formic acid	[26]
	Dooga Earra hy DD UDI C	(0.020) why in water)	
	Dosage Forms by KP-HPLC-	(0.02% V/V III water)	

Finasteride: 2.7 min	
Tamsulosin Hydrochloride: 10.08 m	in
Wavelength: 230 nm	
Flow rate: 1 mL/min	
Stationary Phase: Spherisorb C-18	
RP-HPLC Method for Mobile Phase: Methanol: 0.03mM	
7. Simultaneous Estimation of phosphate buffer pH 3.5 (70:30 v/v)	[27]
Finasteride and Tamsulosin in Wavelength: 210nm	
Tablet Formulations	
Stationary Phase: C18 column (150×	
4.6 mm i.d. particle size of 5u)	
Mobile Phase: 0.1% triethylamine (pl	Ŧ
adjusted to 7 01 \pm 0.05 with 0.1% ortho)
Simultaneous Determination of phosphoric acid) and methanol (30:70	%
Finasteride and Tamsulosin in $\frac{1}{v/v}$	[28]
Combined Dosage Form by Retention time:	
Using RP-HPLC Method Finasteride: 5.8 +0.12 min	
Tamsulosin: 2.9 ± 0.14 min	
Wavelength: 220 nm	
Flow rate:0.7 ml/min	
Stationary Phase: Hypercil ODS C18	
Column 250 X 4.6 mm (particle size of	f
	1
DD HDI C method for the Mabile Dhese: A cotonitrile: $(0.05M)$	
determination of finasteride and $KH_{\rm H}DO$, huffer (45:55 y/y)	
9. tomsulosin in bulk and R112FO4 bullet (43.55 V/V)	[29]
pharmacoutical formulations Finastorida: 2.50 min	
Timasteride. 5.59 Inin	
Wayalangth: 240nm	
Flow rate: 1.8 ml /min	
Stationary Phase: ODS C18 column	
$(25 \text{ cm} \times 4.6 \text{ mm}, 5 \text{ uparticle size})$	
(25 cm × 4.0 mm, 5 µ particle size) Mabila Dhasa: Mathanal: Watar alon	.
Development and Validation of with 0.5 % triethyl amine (TEA) pH	5
Analytical Method for 6.38 adjusted with ortho phosphoria a	vid
Simultaneous Determination of OPA (70.30 y/y)	[30]
Minoxidil and Finasteride in B etention time:	
Pharmaceutical Dosage Form by Finastorida: 4 661 min	
RP-HPLC Method Minovidil: 10 005 min	
Wavelength: 210 nm	
Flow rate 1ml/min	
Stationary nhase C18 column (300	
$mm \times 3.9 mm \cdot 10$ -um particle size)	
Chromatographic Methods for Mobile phase: A cetonitrile - 0.04 M	
Determination of Finasteride and $\begin{bmatrix} 1000 \text{ fraster} & \text{Precionally} & 0.04 \text{ fraster} \\ \text{ortho-phosphoric acid (pH 3.5 + 0.2)} \end{bmatrix}$	[21]
11. Tamsulosin Hydrochloride and adjusted with triethylamine) (50:50 y	v)
in Presence of Finasteride Retention time .	•/
Degradation Product Finasteride: $4.0 \pm 0.2 & 5.0 \pm 0.2 \text{ min}$	n
Tamsulosin Hydrochloride: 9.0 ± 0.2 min	- >

		min	
		Wavelength: 215 nm	
		Flow rate: 1 mL/min	
12.	Development and Validation of Ratio Derivative UV Spectrophotometry Method for Simultaneous Determination of	Katio Derivative Method:Solvent: MethanolWavelength:Finasteride: 253.94 nmTamsulosin Hydrochloride: 235.92 nmLinearity:Finasteride: 10-60 μg/mLTamsulosin Hydrochloride: 1.6-8.0μg/mL	[32]
	Tamsulosin Hydrochloride and Finasteride in Combined Dosage Form	R ² : Finasteride: 0.9963 Tamsulosin Hydrochloride: 0.9998 % Recovery: Finasteride:9 8.02-100.79 % Tamsulosin Hydrochloride: 98.05- 100.62 %	
13.	Simultaneous estimation of tamsulosin hydrochloride and finasteride in combined dosage form by UV spectroscopy method	Solvent: Methanol Wavelength: Finasteride: 240 nm Tamsulosin Hydrochloride: 279 nm Linearity: Finasteride: 10-60 μ g/mL Tamsulosin Hydrochloride: 10-60 μ g/ml R ² : Finasteride: 0.9991 Tamsulosin Hydrochloride: 0.9995 % Recovery: Finasteride: 99.65 Tamsulosin Hydrochloride: 99.45	[33]
14.	Simultaneous determination of Finasteride and Tamsulosin in pharmaceutical preparations by ratio derivative spectroscopy	Ratio derivative spectroscopic method Solvent: Methanol Wavelength: Finasteride: 240.01 Tamsulosin: 229.91 Linearity: Finasteride: 2-10 μ g/mL Tamsulosin: 25-125 μ g/mL R ² : Finasteride: 0.998 Tamsulosin: 0.999 LOD: Finasteride: 0.21 μ g/ml Tamsulosin: 0.19 μ g/ml LOQ: Finasteride: 0.647 μ g/ml Tamsulosin: 0.54 μ g/ml	[34]

		% Recovery:		
		Finasteride: 99.32 % to 100.59 %		
		Tamsulosin: 99.87% to 101.23 %		
		Solvent: Methanol		
		Wavelength:		
		Finasteride: 235 nm		
		Tamsulosin: 225 nm		
	IW Spectrophotometric Method	Linearity:		
	for Simultaneous Determination	Finasteride: 12.5 - 100 µg/ml		
15.	of Tomoulogin and Einesteride in	Tamsulosin: 1- 10 μg/ml	[35]	
	of Tamsulosin and Finasteride in	\mathbf{R}^2 :		
	Combined Dosage Form	Finasteride: 0.9994		
		Tamsulosin: 0.9992		
		% Recovery:		
		Finasteride: between 98.0-99.8%		
		Tamsulosin: between 98.0-99.8%		
		Solvent: Methanol		
		Wavelength:		
		Finasteride: 219 nm		
		Tamsulosin: 224nm		
	UV Spectrophotometric Method	Linearity:		
	for Simultaneous Determination	Finasteride: 12.5-62.5 µg/ml		
16.	of Einstand and Tempelain in	Tamsulosin:1-5 µg/ml	[36]	
	Combined Desega Form	R ² :		
	Combined Dosage Form	Finasteride: 0.9981		
		Tamsulosin: 0.9989		
		% Recovery:		
		Finasteride: 99.76 %		
		Tamsulosin: 99.85 %		

Literature review of tadalafil

> Pharmacopeial methods for estimation of tadalafil

Sr. No.	Drug/ Formulation	Method	Official in	Description	Ref. No.
1.	Bulk drug	HPLC	IP 2018	 Stationary phase: A stainless steel column 25 cm x 4.6 mm packed with Silica gel AD for chiral separation. Mobile phase: Equal volumes of hexane and isopropyl alcohol. Flow rate: 0.75 ml/min Wavelength: 222 nm 	[4]
2.	Bulk drug	HPLC	IP 2018	Stationary phase: A stainless steel column 25 cm x 4.6 mm packed with octadecylsilane bonded to porous silica (5 μm). Mobile phase: A. add 1.0 ml of trifluoro acetic acid to 1000ml water, B. acetonitrile.	[4]

r	T		T		r
				Flow rate: 1 ml/min	
				Stationomy phones A stainlass	
				steel column 25 cm x 4.6 mm, packed octadecylsilane bonded to porous silica (5 μ m).	
3.	Bulk drug	HPLC	IP 2018	Mobile phase: A mixture of 45 volumes of acetonitrile and 55 volumes of solution A. Flow rate: 1.5 ml/min Wavelength: 285 nm	[4]
4.	Tablet	HPLC	IP 2018	 Stationary phase: A stainless steel column 5 cm x 4.6 mm packed octadecylsilane bonded to porous silica (3.5 μm). Mobile phase: A mixture of equal volumes of methanol and water. Flow rate: 2 ml/min Wavelength: 225 nm 	[4]
5.	Bulk drug	LC	USP 2019	Stationary phase: 4.6 mm × 25 cm; 5 μm packing L7 Mobile Phase: acetonitrile: solution A (Add 1 ml of trifluoroacetic acid to 1L of water (45:55) Flow rate: 1.5 ml/min Wavelength: 285 nm Column temperature: 44 °C Injection volume: 20 μl	[10]
6.	Bulk drug	LC	USP 2019	Stationary phase: 4.6 mm × 25cm; 5 μm packing L7Mobile Phase: acetonitrile:solution A (Add 1 ml oftrifluoroacetic acid to 1L of water(15.85, 95:5)Flow rate: 1.0 ml/minWavelength: UV 285 nmColumn temperature: 40 °CInjection volume: 20 μl	[10]
7.	Bulk drug	LC	USP 2019	Stationary phase: 4.6 mm × 25cm; 10 μm packing L7Mobile Phase: Hexenes:Isopropyl alcohol (50:50 v/v)Flow rate: 0.75 ml/minWavelength: 222 nmColumn temperature: 30 °CInjection volume: 10 μl	[10]
8.	Tablet	LC	USP 2019	Stationary phase: 4.6 mm × 25 cm; 3.5 μm packing L7 Mobile Phase: Acetonitrile:	[10]

				Water: Trifluoro acetic acid	
				(35:65:0.1 v/v/v)	
				Flow rate: 1.0 ml/min	
				Wavelength: UV 285 nm	
				Column temperature: 35 °C	
				Injection volume: 10 µl	
				Stationary phase: 4.6 mm × 25	
				cm; 3.5 µm packing L7	
				Mobile Phase: Methanol: Water	
0	Tablat	IC	USP	(50:50 v/v)	[10]
9.	Tablet	2	2019	Flow rate: 2.0 ml/min	
				Wavelength: UV 285 nm	
				Column temperature: 40 °C	
				Injection volume: 50 µl	
				Stationary phase: 4.6 mm × 25	
				cm; 5 μm packing L1	
				Mobile Phase: Acetonitrile:	
				Solution A (10mM solution	
				phosphate adjusted with	
10	Oral colution	IC	USP	phosphoric acid to a pH of 3.0	[10]
10.	Oral solution	LC	2019	pass through a nylon filter of 0.45	
				μm pore size.	
				Flow rate: 0.8 ml/min	
				Wavelength: UV 220 nm	
				Column temperature: 30 °C	
				Injection volume: 25 µl	

> Reported method for estimation of tadalafil

Sr. No.	Method	Description	Ref. No.
1.	High Performance Thin Layer Chromatographic Method for Determination of Tadalafil in Tablet Dosage Form	 Stationary Phase: Silica gel 60 F₂₅₄ TLC plate Mobile Phase: Chloroform: Methanol (9:1 v/v) R_f: 0.78 + 0.008 Wavelength: 285 nm 	[37]
2.	Stability Indicating HPTLC Determination of Tadalafil Hydrochloride in Bulk Drug and Pharmaceutical Formulations	Stationary Phase: Pre-coated silicagel 60F254 aluminum platesMobile Phase: Hexane: Isopropylalcohol: Acetonitrile (5:4:1 v/v/v)Rf: 0.65Wavelength: 285nm	[38]
3.	High Performance Liquid Chromatographic Method for Determination of Tadalafil in Tablets and Wastewater	Stationary Phase: SupelcoC18 column (25cm x 4.6 mm; 5 μm) Mobile Phase: Methanol: Water: Triethylamine (60:38:2 v/v/v) pH adjusted to 4.0 with dilute phosphoric acid Retention time: 3.6 min	[39]

		Wavelength: 220 nm	
		Flow rate: 1.3 ml/min	
4.	High-performance liquid chromatography with diode array detection method for the simultaneous determination of seven selected phosphodiesterase-5 inhibitors and serotonin reuptake inhibitors used as male sexual enhancers	Stationary Phase: Waters C8 column (4.6 × 250 mm, 5 m) Mobile Phase: Phosphate buffer pH 3, acetonitrile and methanol in the ratio 60:33:7 v/v/v Retention time: 13.4 min Wavelength: 225 nm Flow rate: 1.2 mL/min	[40]
5.	Determination of tadalafil in pharmaceutical preparation by HPLC using monolithic silica column	Stationary Phase: Chromolith Performance RP-18e (100 mm × 4.6 mm, i.d.) Mobile Phase: Phosphate buffer (100 mM, pH 3.0)-Acetonitrile (80:20, v/v) Wavelength: 230 nm Flow rate: 5 ml/min	[41]
6.	Validation and Method Development of Tadalafil in Bulk and Tablet Dosage Form by RP-HPLC	Stationary Phase: Agilent Eclipse XDB C 18 column (150 mm \times 4.6 mm, 5 μ) Mobile Phase: Buffer (potassium dihydrogen orthophosphate) and acetonitrile in the ration of 50:50 v/v Retention time: 3.181min Wavelength: 285 nm Flow rate: 1.2 ml/min	[42]
7.	RP-HPLC Method Development and Validation of Tadalafil in Tablet Dosage Form	Stationary Phase: Agilent eclipse C ₁₈ column (4.6 x 250mm, 5um) Mobile Phase: Phosphate buffer pH 4.0: Acetonitrile (50:50 v/v) Retention time: 6 min Wavelength: 284nm Flow rate: 1.0ml/min	[43]
8.	Rapid Resolution RP-HPLC- Dad Method for Simultaneous Determination of Sildenafil, Vardenafil, and Tadalafil in Pharmaceutical Preparations and Counterfeit Drugs	Stationary Phase: Agilent Zorbax SB C8 column (50 ×4.6 mm i.d., 1.8 lm particle size) Mobile Phase: 0.030M of ammonium formate (adjusted to pH 3.0 with formic acid) and acetonitrile in the ratio 70:30 v/v Retention time: 5.067 min Wavelength: 230 nm Flow rate: 1.3 ml/min	[44]
9.	Validation and stability indicating RP-HPLC method for the determination of tadalafil API in pharmaceutical formulations	Stationary Phase: Inertsil C18, (5 μ, 150 mm x 4.6 mm) Mobile Phase: Acetonitrile: Phosphate buffer (70:30 v/v, pH 7.0) Retention time: 2.88 min Wavelength: 260 nm	[45]

		Flow rate: 0.8 ml/min	
10.	Integrated Quality by Design (QbD) Approach for Stability Indicating RP-HPLC Method for the Estimation of Tadalafil Hydrochloride in Bulk Drug and Pharmaceutical Formulations	Stationary Phase: JASCO Crest Pack C18 (250mm×4.6mm, 5μm) Mobile Phase: Acetonitrile: Methanol (40:20 v/v) Wavelength: 285nm Flow rate: 1.0ml/min	[46]
11.	UV Spectrophotometric Method for the Estimation of Tadalafil in Bulk and Tablet Dosage form	Solvent: Methanol Wavelength: 284 nm Linearity: 2-20 mcg/ml	[47]
12.	A Stress Degradation Kinetic Study of Tadalafil Bulk and Tablet Dosage Form by UV Spectrophotometry	Solvent: Methanol Wavelength: 284 nm Linearity: 4-40µg/ml R ² :0.9994 LOD: 0.313µg/ml LOQ: 0.950µg/ml % Recovery: 97.06 - 99.56 %	[48]
13.	Estimation of Tadalafil Using Derivative Spectrophotometry in Bulk Material and in Pharmaceutical Formulation	Solvent: Dimethylfuran Wavelength: Method A: 297 nm Method B: 290.60–304.40 nm Method C: 284 nm Method D: 280.80–286.20 nm Linearity: Method A & B: 05–50 μ g/mL Method C & D: 20–70 μ g/mL R ² :> than 0.999 (For Method A, B, C & D)	[49]
14.	Estimation of Tadalafil in Bulk and in Formulation by UV-Visible Spectrophotometry	Solvent: Ethanol: Water (80:20 v/v) Wavelength: Method A: 284.5 nm Method B: 828 nm Linearity: Method A: 5-30 μ g/ ml Method B: 2-10 μ g/ ml R ² : Method A: 0.9999 LOD: Method B: 0.0999 LOD: Method B: 0.0322 LOQ: Method B: 0.0322 LOQ: Method B: 0.0976 Recovery: Method A: 100.34 \pm 1.363 % Method B: 100 04 \pm 0.345 %	[50]

Sr. No.	Method	Description	Ref. No.
1.	Novel HPTLC densitometric methods for determination of tamsulosin HCl and tadalafil in their newly formulated dosage form: Comparative study and green profile assessment	Stationary Phase: HPTLC silica gel 60 F_{254} platesMobile Phase:Method 1: Ethyl acetate: Toluene:Method 1: Ammonia ($5:3:2:0.5 v/v$)Method 2: Ethyl acetate: Ethanol:Ammonia ($8:2:0.1 v/v$)R _f :Method 1:Tadalafil: 0.60 Tamsulosin: 0.23 Method 2:Tadalafil: 0.65 Tamsulosin: 0.41 Wavelength: 280 nm	[51]
2.	A Validated Green HPTLC Method for Quantitative Determination of Dapoxetine Hydrochloride and Tadalafil in Bulk and Pharmaceutical Formulations	Stationary Phase: Silica gel HPTLC F_{254} Mobile Phase: Ethanol: Ethyl acetate (1:9 v/v) R_f : Tadalafil: 0.75 ± 0.01 Depoxetin Hydrochloride: 0.4 ± 0.01 Wavelength: 222 nm	[52]
3.	A Validated Green HPTLC Method for Quantitative Determination of Dapoxetine Hydrochloride and Tadalafil in Bulk and Pharmaceutical Formulations	Stationary Phase: Hypersil BDS C8, 250 × 4.6 mm column Mobile Phase: Buffer (adjusted to pH 6.8): Acetonitrile (55:45 v/v) Retention time: Tadalafil: 4.473 min Depoxetin Hydrochloride: 5.836 min Wavelength: 254 nm Flow rate: 1.0 ml/min	[53]
4.	A Novel Chromatographic Method with Flouroscence Detection for Quantitation of Tadalafil and Depoxetin Hydrochloride in Pharmaceutical Dosage Form and Human Plasma	Stationary Phase: Eclipse C18 Column (150 mm×4.6 mm, 5 μm) Mobile Phase: Acetonitrile: 0.15% triethylamine (40:40 v/v) (ph:4) Retention time: Tadalafil: 6.642 min Depoxetin Hydrochloride: 4.819 min Wavelength: 236nm Flow rate: 1.0 ml/min	[54]
5.	A Novel Validated Chromatographic Method for Tadalafil and Dapoxetine	Stationary Phase: Kromasil C18 column (250 mm X 4.6 mm, 5 μm) Mobile Phase: ACN: Buffer (10:90 v/v, pH 5.5 adjusted with ortho phosphoric	[55]

> Reported methods for estimation of tadalafil with other drugs

	Hydrochloride in Combined Pharmaceutical Formulations	acid and diethyl ether) Retention time: Tadalafil: 2.806 min	
		Depoxetin Hydrochloride: 5.965 min Wavelength: 290 nm Flow rate: 1.0 ml/min	
6.	A combined approach of green chemistry and Quality-by-Design for sustainable and robust analysis of two newly introduced pharmaceutical formulations treating benign prostate hyperplasia	Stationary Phase: Monolithic-based C18 column Mobile Phase: Ethanol and phosphate buffer (pH 4.0) in a ratio of 40:60 v/v Wavelength: 210 nm Flow rate: 2.3 ml/min	[56]
7.	Implementing Analytical Quality by Design (AQbD) Approach for Simultaneous Estimation of Tadalafil and Macitentan by RP-HPLC Method	Stationary Phase: Phenomexgemini C18 (150 mm, 4.6 mm, 5 μ m) Mobile Phase: Methanol: 10 mM ammonium formate (74.1: 25.9 % v/v) (pH: 6.8) Retention time: Tadalafil: 4.0 ± 0.1 min Mecitentan: 7.2 ± 0.1 min Wavelength: 260 nm Flow rate: 0.94 ml/ min	[57]
8.	A Novel Analytical Method for Simultaneous Quantification of Silodosin and Tadalafil by RP-HPLC	Stationary Phase: Supelco C8 (150mmx4.6mm, 5μm) Mobile Phase: Potassium phosphate dibasic buffer pH (4.3) and acetonitrile in the ratio of (70:30 v/v) Wavelength: 232 nm Flow rate: 1.0 ml/min	[58]
9.	Stability-Indicating RP- HPLC Method for the Determination of Ambrisentan and Tadalafil in Pharmaceutical Dosage Form	Stationary Phase: Hypersil GOLD C18 column (150 mm × 4.6 mm internal diameter, 5 μm particle size) Mobile Phase: Methanol: Water: Acetonitrile (40:40:20 v/v) Retention time: Tadalafil: 7.10 min Ambriesentan: 2.80 min Wavelength: 260 nm Flow rate: 0.5 ml/min	[59]
10.	Development and Validation of a New Stability Indicating RP HPLC Method for Simultaneous Estimation of Tadalafil and Depoxetin	Stationary Phase: Xterra C18 column (250mm x 4.6mm x5µm particle size) Mobile Phase: 0.1% OPA (pH 2.8) and Methanol (45:55v/v) Retention time: Tadalafil: 2.78 min Depoxetin: 3.71 min Wavelength: 229mn	[60]

		Flow rate: 1ml/min	
11.	Development and Validation of Stability Indicating RP-HPLC Method for Estimation of Finasteride and Tadalafil Hydrochloride in Solid Dosage Form	Stationary Phase: Water Symmetry C- 18 (150 x 4.6 mm) Mobile Phase: Buffer: Acetonitrile (65:35 v/v) Retention time: Tadalafil: 10.08 min Depoxetin Hydrochloride: 4.45 min Wavelength: 285 nm Flow rate: 1.0 ml/min	[61]
12.	Smart spectrophotometric assessment of tamsulosin hydrochloride and tadalafil in their new pharmaceutical formulation for treatment of benign prostatic hyperplasia and erectile dysfunction	Solvent: Methanol Linearity: Tadalafil: 2.0-55.0 μg/mL Tamsulosin: 2.0-40.0 μg/mL First derivative method Wavelength: Tadalafil: 245.0 & 279.0 nm Tamsulosin: 284.0 nm Ratio difference method: λmax: Tadalafil: Between 244.0 and 292.0 nm Tamsulosin: Between 275.0 and 244.0nm Derivative ratio method Wavelength: Tadalafil: 241.0 & 248.0 nm Tamsulosin: 236.0, 254.0 & 283.0 nm Mean centering of ratio spectra method Wavelength: 244 nm	[62]
13.	Quantitative determination of Dapoxetine Hydrochloride and Tadalafil using different validated spectrophotometric methods	Solvent: Methanol Wavelength: Method A: First derivative spectra Tadalafil: 230 nm Depoxetin Hydrochloride: 322.4 nm Method B: Area under curve (AUC) Tadalafil: 242-254 nm Depoxetin Hydrochloride: 228-240 nm Linearity: Tadalafil: 3-30 mg/ml Depoxetin Hydrochloride:2-15 mg/ml	[63]
14.	A synchronous spectrofluorometric technique for simultaneous detection of alfuzosin and tadalafil: applied to tablets and spiked biological samples	Solvent: Ethanol Wavelength: Tadalafil: 293 nm Alfuzosin: 366 nm Linearity: Tadalafil:10.0–100.0 ng/ml Alfuzosin: 5.0–90.0 ng/ml R ² :	[64]

Tadalafil: 0.9999	
Alfuzosin: 0.9999	
LOD:	
Tadalafil: 1.52	
Alfuzosin: 0.72	
LOQ:	
Tadalafil: 4.61	
Alfuzosin: 2.18	
% Recovery:	
Tadalafil: 99.73%	
Alfuzosin: 100.44%	

Literature review of Finasteride and Tadalafil in combined dosage form

Sr. No.	Method	Description	Ref. No.
1.	Simultaneous spectrophotometric determination of finasteride and tadalafil in recently FDA approved Entadf [™] capsules	Derivative Spectroscopic Method: Second derivative with zero crossing method (² D) Solvent: Methanol Wavelength: Finasteride: 230.80 nm Tadalafil: 292nm Linearity: Finasteride: 10-140 µg/ml Tadalafil: 3- 40 µg/ml R ² : Finasteride: 0.9997 Tadalafil: 0.9996 LOD: Finasteride: 2.406 Tadalafil: 0.876 LOQ: Finasteride: 7.292 Tadalafil: 2.654 % Recovery: Finasteride: 99.37 % Tadalafil: 99.17 % First derivative of ratio spectra method (¹ DD) Solvent: Methanol Wavelength: Finasteride: 218.80 nm Tadalafil: 289.60 nm Linearity: Finasteride: 10–140 µg/ml Tadalafil: 3–40 µg/ml R ² : Finasteride: 0.9998 Tadalafil: 0.9996	[65]

www.wjpr.net

		LOD:	
		Finasteride: 2.229	
		Tadalafil: 0.815	
		LOQ:	
		Finasteride: 6.755	
		Tadalafil: 2.470	
		% Recovery:	
		Finasteride: 99.74 %	
		Tadalafil: 99.56 %	
		Stationary phase: Zorbax Eclipse C18	
	Selective and rapid determination of tadalafil and finasteride using solid phase	column (50 \times 4.6 mm, 5 μ m)	
		Mobile phase: Mixture of 4 mM	
		ammonium formate (pH 4.0): acetonitrile:	
		methanol 20:45:35 (v/v/v) was filtered	
		through a 0.45 µm membrane filter	
		Retention time:	
2	avtraction by high	Finasteride: 1.63 min	[65]
۷.	performance liquid chromatography and tandem mass spectrometry	Tadalafil: 1.41 min	
		Linearity:	
		Finasteride: 0.2–30.0 ng/ml	
		Tadalafil: 5–800 ng/ml	
		Flow rate: 0.7 ml/min	
		Wavelength: 210 nm.	
		Injection Volume: 20 µl	
		Column temperature: 35 °C	

CONCLUSION

This review present general knowledge about Finasteride and Tadalafil and also general introduction about analytical method validation. This review presents analytical methods applied for the determination of Finasteride and Tadalafil for individual drugs or in combination with other drugs as well as this literature review includes reported pharmacopeial methods for both the drugs. At present, various analytical methods like Spectrophotometry, RP-HPLC, HPTLC, are available for the simultaneous estimation of Finasteride with combination of drugs like Minoxidil, Tamsulosin, Depoxetin etc. Similarly, for estimation of Tadalafil, Various analytical methods are available for the simultaneous estimation with Tamsulosin, Depoxetin Mecitentan, Silodosin etc. From this literature review, it can be concluded that there is only one UV Spectrophotometry method and one LC/MS method till date has been reported. This literature review will be helpful for further research on both of this drug and their combination for future analytical studies. This can be used as reference for further method development and validation in future.

REFERENCES

- 1. G J Gormley, Finasteride: A clinical review, Biomed & Pharmacother, 1995; 49: 319-324.
- Wood, Alastair J.J.; Rittmaster, Roger S., Finasteride. New England Journal of Medicine, 1994; 330(2): 120–125.
- 3. Bojanapu A, Subramaniam AT *et al.*, "Validation and Method Development of Tadalafil in Bulk and Tablet Dosage Form by RP-HPLC", *Drug Research*, 2015; 65: 82–85.
- Indian Pharmacopoeia 2018, Government of India, Ministry of Health and Family Welfare, The Indian Pharmacopoeia Commission, Ghaziabad, 2018, 8: 1, 2, 3 & 4, 232, 248, 517, 674, 2057-2059, 3300-3304.
- The Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals; The Royal Society of Chemistry, 2013; 15: 747 - 1669.
- 6. Drug profile, Finasteride, February, 2023. Finasteride | C23H36N2O2 PubChem (nih.gov)
- 7. Drug profile, Tadalafil, February, 2023. Tadalafil | C22H19N3O4 PubChem (nih.gov)
- P. Ravisankar, S. Gowthami, G. Devlala Rao, A review on analytical method development, Indian Journal of Research in Pharmacy and Biotechnology, 2014; 2(3): 1183-1195.
- ICH Harmonised Tripartite Guideline Validation of Analytical Procedures: Text and Methodology Q2(R1), International Conference on Harmonization, Geneva, Switzerland, 2005.
- US Pharmacopoeia National Formulary, United states Pharmacopeial convection, USA, 2019; 2: 1847 4146.
- 11. The British Pharmacopoeia 2010, Health Minister on the recommendation of the Commission on Human Medicines, London: The stationary Office, 2010; 1: 887-888.
- 12. Belal TS, Mahrous MS *et al.*, "Validated HPTLC method for the simultaneous determination of alfuzosin, terazosin, prazosin, doxazosin and finasteride in pharmaceutical formulations", *Analytical Chemistry Research*, 2014; 23-31.
- Sawant S, Ghante M, "Stability Indicating Method Development and Validation of Finasteride by High-Performance Thin-Layer Chromatography Studies", *Asian Journal of Chemistry*, 2017; 29(10): 2159-2162.
- 14. Basavaiah K, Somashekar BC, "Determination of Finasteride in Tablets by High Performance Liquid Chromatography", *E-Journal of Chemistry*, 2007; 4(1): 109-116.

- 15. Nemane ST, Gholve SB *et al.*, "Development and Validation of a RP- HPLC Method for Determination of Finasteride in Pharmaceutical Dosage Forms", *World Journal of Pharmaceutical Science*, 2020; 9(2): 883-895.
- Syed AA, Amshumali MK, "LC determination of finasteride and its application to storage stability studies", *Journal of Pharmaceutical and Biomedical Analysis*, 2001; 25: 1015–1019.
- Manne S, Kakarla R *et al.*, "Rapid Analysis of Finasteride in Bulk and Formulations by RP-HPLC-PDA Method", *Journal of the Chilean Chemical Society*, 2012; 57: 1469-1471.
- Segall AI, Vitale MF et al., "A Stability-Indicating Hplc Method to Determine Finasteride in A Tablet Formulation", Journal of Liquid Chromatography & Related Technologies, 2002; 25(20): 3167–3176.
- 19. Reddy MF, Subba Reddy GV *et al.*, "A Stability Indicating UPLC Method for Finasteride and Its Related Impurities", *American Journal of Analytical Chemistry*, 2012; 3: 737-745.
- 20. Vijaya Lakshmi N, Rao GSN K *et al.*, "Development and Validation of UV Spectrophotometric Method for the Estimation of Finasteride in Tablets", *International Journal of Pharma Sciences*, 2013; 3(1): 123-125.
- 21. Bari SB, Jain PS et al., "HPTLC Method Validation for simultaneous determination of Tamsulosin Hydrochloride and Finasteride in Bulk and Pharmaceutical Dosage Form", *Journal of Analytical and Bioanalytical Techniques*, 2011; 2.
- 22. Patel J, Tandel J *et al.*, "Stability Indicating Planar Chromatographic method for Estimation of Minoxidil and Finasteride Combination used in the treatment of Hair loss", *Journal of Medical and Chemical Sciences*, 2021; 4(1): 17-28.
- 23. Suganya MS, M. Pharm. Theses, "Simultaneous Estimation of Finasteride and Tamsulosin Hydrochloride in Pharmaceutical Dosage Forms by UV Spectrophotometry, RP HPLC and HPTLC", 2007; 1-124.
- 24. Patel DB, Patel NJ, "Validated RP-HPLC and TLC methods for simultaneous estimation of tamsulosin hydrochloride and finasteride in combined dosage forms", *Acta Pharmaceutica*, 2010; 197-205.
- 25. Sujana K, Sankar D *et al.*, "Simultaneous estimation of finasteride and tamsulosin hydrochloride by reverse phase HPLC in bulk and pharmaceutical dosage form", *International Journal of Pharmacy and Life Sciences*, 2012; 3(8): 1905-1908.

- 26. Sindhura M, Raghavi K, Prashanthi R *et al.*, "Simultaneous Estimation of Finasteride and Tamsulosin Hydrochloride in Combined Dosage Forms by RP-HPLC-PDA Method", *Journal of Applied Pharmaceutical Science*, 2012; 2(6): 203-209.
- 27. Mittal A, Parmar S *et al.*, "RP-HPLC Method for Simultaneous Estimation of Finasteride and Tamsulosin in Tablet Formulations", *Indonesian Journal of Pharmacy*, 2015; 26(1): 45 51.
- 28. Nasare MK, Jetta S *et al.*, "Simultaneous Determination of Finasteride and Tamsulosin in Combined Dosage Form by Using RP-HPLC Method", *Journal of Liquid Chromatography & Related Technologies*, 2014; 37: 1176–1186.
- Thimmaraju M, Rao V *et al.*, "RP HPLC method for the determination of finasteride and tamsulosin in bulk and pharmaceutical formulations", *Scholar Research Library*, 2011; 3(5): 79-86.
- 30. Patel N, Meshram D et al., "Development and Validation of Analytical Method for Simultaneous Determination of Minoxidil and Finasteride in Pharmaceutical Dosage Form by RP-HPLC Method", International Journal of Pharmaceutical Sciences, 2015; 6(11): 4882-4885.
- 31. Monir HH, Ali AM, "Chromatographic Methods for Determination of Finasteride and Tamsulosin Hydrochloride and in Presence of Finasteride Degradation Product", Acta Chromatographica, 2020; 32(2): 95-101.
- 32. Makasana YL, Gotecha NB *et al.*, "Development and Validation of Ratio Derivative UV Spectrophotometry Method for Simultaneous Determination of Tamsulosin Hydrochloride and Finasteride in Combined Dosage Form", *Inventi Rapid: Pharm Analysis & Quality Assurance*, 2013; (1): 0976-3813.
- 33. Gadhave NA, Ghante MR *et al.*, "Simultaneous estimation of tamsulosin hydrochloride and finasteride in combined dosage form by UV spectroscopy method", *Journal of Pharmacy Research*, 2011; 4(8): 2672-2674.
- 34. Kategaonkar AH, "Dhaval M. Patel *et al.*, Simultaneous determination of Finasteride and Tamsulosin in pharmaceutical preparations by ratio derivative spectroscopy", *Journal of Pharmacy Research*, 2009; 2(6): 1065-1067.
- 35. Nasare M, Satish. J et al., "UV Spectrophotometric Method for Simultaneous Determination of Tamsulosin and Finasteride in Combined Dosage Form", 2012; 2(5): 781-788.

- 36. Thimmaraju M, Rao V et al., "UV Spectrophotometric Method for Simultaneous Determination of Finasteride and Tamsulosin in Combined Dosage Form", Int. J. Bio. Sci, 2011; 1(3): 303-310.
- 37. Patel SA, Patel NJ, "High Performance Thin Layer Chromatographic Method for Determination of Tadalafil in Tablet Dosage Form", American Journal of Pharmatech Research, 2011; 1(3): 138-146.
- 38. Patil PH, Gurupadayya BM et al., "Stability Indicating HPTLC Determination of Tadalafil Hydrochloride in Bulk Drug and Pharmaceutical Formulations", *Research Journal of Pharmacy and Technology*, 2020; 13(6): 2608-2614. July 2022, https://rjptonline.org/HTML_Papers/Research Journal of Pharmacy and Technology_PID_2020-13-6-14.html
- Ahmed NR, "High Performance Liquid Chromatographic Method for Determination of Tadalafil in Tablets and Wastewater", *Iraqi Journal of Pharmaceutical Sciences*, 2014; 14(1): 87-94.
- 40. Baker MM, Belal TS *et al.*, "High-performance liquid chromatography with diode array detection method for the simultaneous determination of seven selected phosphodiesterase-5 inhibitors and serotonin reuptake inhibitors used as male sexual enhancers", *Journal of Separation Science*, 2016; 39(9): 1605-1792.
- 41. Aboul-Enein HY, Ali I, "Determination of tadalafil in pharmaceutical preparation by HPLC using monolithic silica column", *J. Talanta*, 2005; 276-280.
- 42. Bojanapu A, Subramaniam AT *et al.*, "Validation and Method Development of Tadalafil in Bulk and Tablet Dosage Form by RP-HPLC", *Drug Research*, 2015; 65: 82–85.
- Chavan PA, Dattatraya SR *et al.*, "RP-HPLC Method Development and Validation of Tadalafil in Tablet Dosage Form", *Asian Journal of Research in Chemistry*, 2021; 14(5): 380-388. August 2022, https://www.ajrconline.org/HTML_Papers/Asian Journal of Research in ChemistryPID_2021-14-5-14.html
- 44. Yang YJ, Song DM *et al.*, "Rapid Resolution RP-HPLC-DAD Method for Simultaneous Determination of Sildenafil, Vardenafil, and Tadalafil in Pharmaceutical Preparations and Counterfeit Drugs", *Analytical Letters*, 2010; 43: 373–380.
- 45. Reddy BP, Reddy KA *et al.*, "Validation and stability indicating RP-HPLC method for the determination of tadalafil API in pharmaceutical formulations", *Research in Pharmaceutical Biotechnology*, 2012; 2(1): 001-006.
- 46. Patil PH, Gurupadayya B *et al.*, "Integrated Quality by Design (QbD) Approach for Stability Indicating RP-HPLC Method for the Estimation of Tadalafil Hydrochloride in

Bulk Drug and Pharmaceutical Formulations", *Current Pharmaceutical Analysis*, 2021; 17: 932-944.

- 47. Yunoos M *et al.*, "UV Spectrophotometric Method for the Estimation of Tadalafil in Bulk and Tablet Dosage form", *E-Journal of Chemistry*, 2010; 7(3): 833-836.
- 48. Vyas AJ, Gol DA *et al.*, "A Stress Degradation Kinetic Study of Tadalafil Bulk and Tablet Dosage Form by UV Spectrophotometry", *Asian J. Pharm. Ana.* 2020; 10(4): 177-181.
- 49. Khan ZG, Patil AS *et a..*, "Estimation of Tadalafil Using Derivative Spectrophotometry in Bulk Material and in Pharmaceutical Formulation", *International Journal of Spectroscopy*, 2014; 1-6.
- 50. K Anandakumar, K Varadharajan *et al.*, "Estimation of Tadalafil in Bulk and in Formulation by UV-Visible Spectrophotometry", *Asian J. Research Che*, 2010; 3(1): 54-57.
- 51. Abdel-Moety EM, Weshahy SA *et al.*, "Novel HPTLC densitometric methods for determination of tamsulosin HCl and tadalafil in their newly formulated dosage form: Comparative study and green profile assessment", *Biological Chromatography*, 2020; 1-12.
- 52. Naguib IA, Magdy MA *et al.*, A Validated Green HPTLC Method for Quantitative Determination of Dapoxetine Hydrochloride and Tadalafil in Bulk and Pharmaceutical Formulations", *Journal of Chromatographic Science*, 2020; 58(4): 303–308.
- 53. Chenthilnathan A, Rajeshwari M *et al.*, "Validated RP-HPLC Method for Simultaneous Estimation Of Tadalafil and Dapoxetine Hydrochloride in Combined Pharmaceutical Dosage Forms", *International Journal of Pharmacy and Biological Sciences*, 2014; 4(2), 72-82.
- 54. Hegazy M, Kessiba A *et al.*, "A Novel Chromatographic Method withFlouroscence Detection for Quantitation of Tadalafil and Depoxetin Hydrochloride in Pharmaceutical Dosage Form and Human Plasma", *Chinese Journal of chromatography*, 2015; 33: 765-770.
- 55. Patel RK, Solanki K *et al.*, "A Novel Validated Chromatographic Method for Tadalafil and Dapoxetine Hydrochloride in Combined Pharmaceutical Formulations", *AEGAEUM JOURNAL*, 2020; 8(4): 750-758.
- 56. Abdel-Moety EM, Rezk MR et al., "A combined approach of green chemistry and Quality-by-Design for sustainable and robust analysis of two newly introduced

pharmaceutical formulations treating benign prostate hyperplasia", *Microchemical Journal*, 2020; 1-21.

- 57. Vyas AJ, Gol DA *et al.*, "Implementing Analytical Quality by Design (AQbD) Approach for Simultaneous Estimation of Tadalafil and Macitentan by RP-HPLC Method", *Analytical Chemistry Letters*, 2021; 11(4): 539 – 552.
- 58. Gupta A, Mishra SK, "A Novel Analytical Method for Simultaneous Quantification of Silodosin and Tadalafil by RP-HPLC", *Journal of Pharmaceutical Research International*, 2021; 33(39B): 193-202.
- Patel JK, Patel NK, "Stability-Indicating RP-HPLC Method for the Determination of Ambrisentan and Tadalafil in Pharmaceutical Dosage Form", *Scientica Pharmaceutica*, 2014; 82: 749-763.
- 60. Tarinnum N, Harshitha N *et al.*, "Development and Validation of a New Stability Indicating RP HPLC Method for Simultaneous Estimation of Tadalafil and Depoxetin", *International Journal of Novel Research and Development*, 2022; 7(5): 553-561.
- 61. Rajpara CS, Akhtae J *et al.*, "Development and Validation of Stability Indicating RP-HPLC Method for Estimation of Finasteride and Tadalafil Hydrochloride in Solid Dosage Form", *Pharmatutor Journal*, 2019; 7(9). July 2022, DEVELOPMENT AND VALIDATION OF STABILITY INDICATING RP-HPLC METHOD FOR ESTIMATION OF TADALAFIL AND DAPOXETINE HCL IN SOLID DOSAGE FORM | Pharmatutor
- 62. Wadie M, Rezk MR *et al.*, "Smart spectrophotometric assessment of tamsulosin hydrochloride and tadalafil in their new pharmaceutical formulation for treatment of benign prostatic hyperplasia and erectile dysfunction", *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2019; 1-22.
- 63. Magdy MA, Anwar BH *et al.*, "Quantitative determination of Dapoxetine Hydrochloride and Tadalafil using different validated spectrophotometric methods", *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2020; 1-8.
- 64. Elama HS, Shalan SM *et al.*, "A synchronous spectrofluorometric technique for simultaneous detection of alfuzosin and tadalafil: applied to tablets and spiked biological samples", *Royal Society Open Sciences*, 2022; 1-16.
- 65. Abdelazim AH, Ramzy S, "Simultaneous spectrophotometric determination of finasteride and tadalafil in recently FDA approved Entadf[™] capsules", *Abdelazim and Ramzy BMC Chemistry*, 2022; 16-55.

66. Nagarajua P, Kodali B *et al.*, "Selective and rapid determination of tadalafil and finasteride using solid phase extraction by high performance liquid chromatography and tandem mass spectrometry", *Journal of Pharmaceutical and Biomedical Analysis*, 2018; 152: 215–223.