

Volume 10, Issue 11, 756-771.

<u>Review Article</u>

ISSN 2277-7105

AN OVERVIEW OF ANALYTICALMETHODS FOR DETERMINING METFORMIN HYDROCHLORIDE AND PIOGLITAZONE HYDROCHLRIDE IN BULK AND PHARMACEUTICAL DOSAGE FORMS

Pragati Sorate*, Ashwini Thorat, Shrutika Jagtap, Ashwini Taware and Rajendra Bandal

S.V.P.M's College of Pharmacy, Malegaon (BK), Baramati, Pune-413115, Department of Quality Assurance Technique.

Article Received on 16 July 2021,

Revised on 06 August 2021, Accepted on 26 August 2021 DOI: 10.20959/wjpr202111-21465

*Corresponding Author Pragati Sorate S.V.P.M's College of Pharmacy, Malegaon (BK), Baramati, Pune-413115, Department of Quality Assurance Technique.

ABSTRACT

Diabetes mellitus is one of the world's major disease and is the third leading cause of death in the United States after heart disease and cancer. In the India, about 2-6% population suffer from diabetes or related complications. Anti-diabetic drugs treat diabetes mellitus by lowering glucose level in the blood. Mostly anti-diabetic drugs are administered orally except the insulin, exenatide and pramlintide. There are different types of anti-diabetic drugs, and there selection depends on the nature of diabetes, age and situation of the person and many other factors. Treatments include the agents which include the agents which increase the amount of insulin secreted by the pancrease, or increases the sensitivity of target organs to insulin, and agents which

decrease the rate at which glucose is absorbed from the gastrointestinal tract. People are mainly focused on insulin, insulin analogues, oral hypoglycemic agents and various other complementary and alternate medicines to control the blood glucose levels in diabetes. The present review summarizes in brief about the drugs used for treatment of diabetes mellitus.

WORDS TO REMEMBER: Diabetes Mellitus, Glucose, Anti-diabetic Drugs, PPAR, Insulin.

INTRODUCTION

The word diabetes Mellitus means excessive excretion of sweet urine'. Diabetes mellitus is a group of metabolic Diseases characterized by hyperglycemia resulting from defects in insulin secretion, action or both. Chronic hyperglycemia of diabetes is associated with long term damage, dysfunction, and failure of various organs specially the eyes, kidneys, nerves, heart and blood vessels. Insulin is either not secreted in sufficient amount or does not effectively stimulate its target cells, hyperglycemia occurs. In hyperglycemia blood glucose level becomes so high that glucose "spills over" in urine. However, cells starve since glucose stimulated entry into the cells is impaired. Apparent symptoms of hyperglycemia are excessive thirst and frequent urination. Chronic hyperglycemia causes damage to the eyes, kidneys, nerves, heart and blood vessels.

Causes of diabetes mellitus

Main causes of diabetes mellitus are

- Genetic defects of beta cell functions
- Genetic defects in insulin action.
- Diseases of the exocrine pancreas.

Endocrinopathies, i.e., changes in hormonal secretion and, Drugs or chemical induced

Types of diabetes mellitus

- Insulin dependent or juvenile-onset diabetes mellitus
- Non insulin dependent or maturity-onset diabetes

Type 1 diabetes mellitus

Insulin dependent Diabetes mellitus (IDDM) i.e patients require periodic doses of insulin it can occur at any age, commonly occurs in children, Characterized by the marked inability of the pancreas to secrete insulin because of autoimmune destruction of the beta cells. Kidney malfunctioning, nerve impairment, cardiovascular disease and retinal degeneration occur.

Type 2 diabetes mellitus

Type 2 diabetes is non-insulin dependent diabetes mellitus (NIDDM). It accounts forabout 90% of diagnosed cases of diabetes and affects 18% of the population over 65 years of age. Insulin receptors on insulin responsive cells do not respond normally to insulin and are therefore called as "insulin resistant", thereby increasing blood glucose level.

Anti-diabetic drugs

1. Metformin hydrochloride

Metformin Hydrochloride is in a class of drugs called biguanides. Chemically it is 1,1Dimethyl biguanides hydrochloride. It is used to treat Type 2 diabetes. It helps to control amount of glucose in the blood. It decreases the amount of glucose you absorb from your food and the amount of glucose made by liver. Metformin also increases body response to insulin, a natural substance that controls the amount of glucose in the blood. The empirical formula of Metformin Hydrochloride is C4H12C1N5 and its molecular weight is 165.62g/mol.

Structure of metformin hydrochloride

Metformin Hydrochloride

Figure 1: Metformin hydrochloride.

2. Pioglitazone hydrochloride

Pioglitazone Hydrochloride is the hydrochloride salt of an orally -active thiazolidinedione with antidiabetic properties and potential antineoplastic activity. Pioglitazone Hydrochloride chemically it is 5-(4-2(5-ethylpyridin-2-ylethoxy)benzyl))thiazolidine2,4dione hydrochloride Pioglitazone activates peroxisome proliferator-activated receptor gamma (PPAR-gamma), a ligand -activated transcription factor, thereby including cell differentiation and inhibiting cell growth and angiogenesis. This agent also modulate the transcription of insulin –responsive genes, inhibits macrophage and monocyte activation, stimulates adipocyte differentiation. It is used to treat Type 2 diabetes. The empirical formula of Pioglitazone hydrochloride is C19H20N2O3S and its molecular weight is 356.4gm/mol.

Structure of pioglitazone hydrochloride

Figure 2: Pioglitazone hydrochloride.

The following factors are taken into account when categorizing reported methods:

- 1. UV-Spectroscopy, chromatography and other procedures for determining Metformin Hydrochloride alone and in combination with other medications.
- 2. UV-Spectroscopy, chromatography and other procedure for determining Pioglitazone Hydrochloride alone and with other medications.
- 3. UV-Spectroscopy, chromatography, and other techniques for determining Metformin Hydrochloride coupled with Pioglitazone Hydrochloride.

Sr. no.	Drugs	Method	Description	Re.no.
1	Metformin hydrochloride In bulk and tablet dosage form	U.V-Visible spectrophotometry	Detection Wavelength -234nm Solvent-Methanol Linearity Range-10-50µg/ml Regression Coefficient-0.9998 %Recoveries-99-100% RSD-0.5390 %RSD-53.90	[5]
2	Pioglitazone hydrochloride In Pharmaceutical dosage form	U.V-Visible Spectrophotometry	Detection Wavelenght-224nm Solvent-Ethanol Linearity Range-5-25µg/ml Regression Coefficient-0.999 %Recoverie-100% RSD-0.1468	[6]
3	Metformin hydrochloride and Pioglitazone hydrochloride In tablet dosage form	U.V-Visible Spectrophotometry	Detection Wave length - MH-237nm PH-225nm Solvent-Methanol Linearity Range(µg/ml) HH-2-10(µg/ml) PH-2-20(µg/ml) Regression Coefficient- MH-0.993 PH-0.994 %Recoveries- MH-99.8% PH-100.4%	[7]

www.wjpr.net

	r			
			$LOD(\mu g/ml)$ -	
			MH-40.41	
			PH-40.80	
			LOQ(µg/ml)-	
			MH-122.45	
			PH-123.65	
			Detection Wavelenght-225nm	
			Column-Nova-pakC18	
			Column	
			Mobile Phase-Ammonium	
			Formate	
	Pioglitazone		Buffer:Acetonitrile(75:25v/v)	
Λ	Hydrochloride	НРІ С	Regression Coefficient-0.999	[8]
-	In tablet dosage form		Flow Rate-1.0/ml	
	In tablet dosage form		Injection Volume-201/ml	
			Retention time-3min	
			Detector-U.Vdetector	
			%Recoverie-101%	
			LOD-0.2µg/ml	
			LOQ-0.5µg/ml	
			Detection Wavelenght-	
			MH-235nm	
			PH-266nm	
			Column-ODS/Cyano;ACE	
			Mixed column	
			(1004.6mm;5m)	
			Mobile Phase-Acetronitrile:	
			Phosphate	
			buffer(50:50v/v)(pH-5)	
			Linearity Range-025-	
			20(µg/ml)	
			Regression Coefficient-0.9995	
	Metformin Hydrochloride		Flow Rate-1.2ml/min	
	and Pioglitazone		Injection Volume-201/ml	
5	Hydrochloride	HPLC	MH-5l/ml	[9]
	In pharmaceutical dosage		PH-20l/ml	
	form		Retention Time-	
			MH-1.07min	
			PH-1.85min	
			Detector-UV detector	
			%Recoveries-	
			MH-100.13%	
			PH-100.22%	
			LOD(µg/ml)-	
			MH-3.3	
			PH-0.33	
			LOQ(µg/ml)-	
			MH-10	
			PH-10	
6	Pioglitaone Hydrochloride	RP-UPLC	Detection Wavelenght-220nm	[10]
	- · ·		·	

L

	In dosage form		Column-UPLC-BEHC-18 (1002.1mm) Mobile Phase-Acetonitrile and Buffer(v/v)(pH-3.2) Linearity Range(µg/ml)- 0.05-300 Regression Coefficient-0.9999 Flow Rate-0.20min/ml Injection Volume-21 Retention Time-2.1min Detector-U.Vdetector %Recoverie-94.4-101.4% LOD(µg/ml)-0.05 LOO(µg/ml)-0.01	
7	Metformin hydrochloride In tablet dosage form	RP-HPLC	Detection Wavelenght-233nm Column-ODS C18Bondapak column(0.425cm)0.5m Mobile Phase-Water:Methanol (70:30v/v) Linearity Range-0.312-5µg/ml Regression Coefficient-0.999 Flow Rate-0.5ml/ml Injection Volume-20 Retention Time-4.4min Detector-U.V detector %Recoveries-101% LOD-0.1µg/ml LOQ-0.3µg/ml	[11]
8	Pioglitazone hydrochloride In tablet dosage form	RP-HPLC	Detection Wavelenght-266nm Column-Hypersil C8(mm) Mobile Phase-Acetonitrile: Water(60:40v/v)(pH-6) Regression Coefficient-0.9996 Flow Rate-1ml/min Injection Volume-20l/ml Retention Time-6.40min Detector- U.V detector %Recovere-99.9% LOD(µg/ml)- 0.0319 LOQ(µg/ml)-0.968	[12]
9	Metformin Hydrochloride and Pioglitazone Hydrochloride In tablet dosage form	RP-HPLC	Detection Wavelenght-230nm Column-C18 Reverse Phase Column (150mm 4.6mm,5m) Mobile phase-Methanol ;Ortho-phosphoric acid(45:55) Regression Coefficient-0.9996 Flow Rate-1min/ml Injection Volume-201 Retention Time- MH-1.63min	[13]

			PH-3.8min Detector-U.V detector %Recoveries- MH-101% PH-120% LOD(µg/ml)	
			MH-0.00554 PH-0.01678 LOQ(µg/ml)- MH-0.01648 PH-0.02281	
10	Metformin Hydrochloride and Pioglitazone Hydrochloride In bulk and tablet dosage form	RP-HPLC	Detection Wavelenght-242nm Column-ODS HG-5RP C18 Column (150 4.6mm,i.d 5mm) Mobile Phase- Acetonitrile:Potassium dihydrogen phosphate buffer(pH-3)(80:20v/v) Linearity Range- MH-0-750µg/ml PH-0-25µg/ml Regression Coefficient-0.999 Flow Rate-1ml/min Injection Volume-20l/ml Retention Time- MH-1.97min PH-5.43min Detector-U.V Detector %Recoveries- MH-101% PH-102% LOD(µg/ml)- MH-0.1 PH-0.03 LOQ(µg/ml)- MH-0.3 PH-0.09	[14]
11	Metformin Hydrochloride and Pioglitazone Hydrochloride In combined dosage form	RP-HPLC	Detection Wavelenght-230nm Column-Luna C18 (5mm, 25cm4.6) Mobile Phase-Acetonitrile: Water: Acetic Acid (60:40:0.3) (pH-5.5) Linearity Range- MH-0.5-4.0µg/ml PH-0.0015-0.120g/ml Regression Coefficient- MH-0.9992,PH-0.9975 Flow Rate-1ml/min Injection Volume-20l	[15]

			Retention Time- MH-2.1min PH-5.35min %Recovery- MH-99.95% PH-99.85% Detector-U.V detector LOD- MH-0.001(µg/ml) PH-0.007(µg/ml) LOO-	
			MH-0.002(µg/ml) PH-0.002(µg/ml)	
12	Metformin Hydrochloride and Pioglitazone Hydrochloride In bulk and formulation dosage form	RP-HPLC	Detection Wavelenght-228nm Column-Hypersil BDS C18 (250mm4.6mm,0.5m) Mobile Phase- Acetonitrile:0.01m Sodium dihydrogen phosphate(60:40) Linearity Range- MH-20-120(µg/ml) PH-0.6-3.6(µg/ml) Regression Coefficient-0.999 Flow Rate-1min/ml Injection Volume-20l Retention Time- MH-2.280min PH-3.850min Detector-U.V Detector %Recoveries- MH-101% PH-100% LOD(µg/ml)- MH-2.38 PH-0.09 LOQ(µg/ml)- MH-7.282 PH-0.28	[16]
13	Metformin Hydrochloride and Pioglitazone Hydrochloride In pharmaceutical dosage form	RP-HPLC	Detection Wavelenght-255nm Column-C18 Column(150mm4.6mm,5) Mobile Phase-Acetonitrile : Ammonium Acetate Buffer(pH-3)(42:58) Linearity Range- MH-0.5-50(g/ml) PH-0.3-30(g/ml) Regression Coefficient-0.999 Flow Rate-0.3ml/min Injection Volume-20l	[17]

			Retention Time- MH-5.16min PH-8.1min Detector-U.V detector %Recovery- MH-98.23% PH-100.11% LOD(μ g/ml)- MH-0.003 PH-0.0061 LOQ(μ g/ml)- MH-0.01 PH-0.02	
14	Metformin Hydrochloride and Pioglitazone Hydrochloride In dosage form	RP-HPLC	Detection Wavelenght-228nm Column-C- 18 Column Mobile Phase- Phosphate Buffer: Acetonitrile (pH-3.4)(35:65v/v) Linearity Range(µg/ml)- MH-50-100 PH-20-180 Regression Coefficient-0.999 Flow Rate-1ml/min Injection Volume-201 Retention time- MH-5min PH-6min Detector-U.V detector %Recoveries- MH-100.5% PH-98.3% LOD(µg/ml)- MH-1.52 PH-20.2 LOQ(µg/ml)- MH-12.4 PH-13.5	[18]
15	Metformin Hydrochlorid and Pioglitazone Hydrochloride In tablet dosage form	RP-HPLC	Detection Wavelenght-228nm Column-Hypersil BDS C18 (2504.6mm5) Mobile Phase-Acetonitrile: 0.01M Sodium Dihydrogen Phosphate (60:40%) Linearity Range(µg/ml)- MH-20-120 PH-0.6-3.6 Regression Coefficient- Flow Rate-1ml/min Injection Volume-201 Retention Time-	[19]

			1	
			MH-2.280min	
			PH-3.960min	
			Detector-U.V Detector	
			%Recovery-	
			MH-99.57	
			PH-100.93	
			LOD(µg/ml)-	
			MH-2.38	
			PH-0.09	
			LOQ(µg/ml)-	
			MH-7.282	
			PH-0.28	
			Detection Wavelenght-258nm	
			Column-Inertsil –ODS-3 C18	
			column (2504.60mm,5)	
			Mobile Phase-	
			Methanol:Phosphate	
			Buffer(pH-4.3)($75:25v/v$)	
			Linearity Range-	
	Metformin Hydrochloride, Pioglitazone Hydrochloride and glimepiride	RP-HPLC	MH-10-5000µg/ml	
			PH-10-150ug/ml	
			Glim-1-10ug/ml	
			Regression Coefficient-(all 3)	
16			close to 1	[20]
10			Flow Rate-1min/ml	
	In tablet dosage form		Injection Volume-201/ml	
	in tablet dosage form		Retention Time-	
			MH-2 66+0 5min	
			$PH_7 12+0.5min$	
			$Glim_{10} 17 \pm 0.5min$	
			Detector-UV detector	
			% Recoveries_	
			MH_101%	
			PH_101%	
			Glim-100%	
			Detection Wavelenght_232nm	
			Column- Cosmosil	
			C18(2504 fmm 5m)	
			Mobile Phase $-0.1\% v/v$	
			A cetonitrile: Triethylamine(30)	
	Metformin Hydrochloride,		70% y/y) (pH 2.5)	
	Voglibose, and		10% $10%$	
17	Pioglitazone		MIL 200 600	[21]
1/	Hydrochloride	κρ-μεγγ	$V_{10} = 2000$	
	In pharmaceutical dosage		V US-20-20 DI 0 02 0 24	
	form		PH-U.U8-U.24	
			Regression Coefficient-0.9996	
			Flow Kate-U.8ml/min	
			Injection Volume-20µg/ml	
			Retention Time-	
			MH-2.6min	

			Vog-7.12min	
			PH-10.12min	
			Detector-U.V.detector	
			%Recoveries-	
			MH-100%	
			Vog-99.9%	
			PH-101%	
			LOD(µg/ml)-	
			MH-5.43	
			Vog-0.93	
			PH-0.0032	
			LOQ(µg/ml)-	
			MH-16.52	
			Vog-2.83	
			PH-0.0097	
			Detection Wavelenght-210nm	
			Column-ACE	
			(3150 mm4.6.3.5 m column)	
			Mobile Phase-10mM Sodium	
			hexane sulphonate	
			monohydrate and 10mM	
			Potassium dihydrogen	
			phosphate buffer with	
			A sotonitrile and mothenel	
			Linearity Dange 12 100ug/ml	
			Degreesion Coefficient 0 0002	
			Regression Coefficient-0.9995	
	Metformin Hydrochloride		Flow Rate-1.5ml/min	
18	,Rosiglitazone and	RP-HPLC	Injection Volume-201/ml	[22]
	Sitagliptin		Retention Time-	
	01		MH-1.445min	
			Rosi-7.270min	
			Sita-8.154min	
			Detector-U.V detector	
			% Recoveries-	
			MH-100%	
			Rosi-101%	
			Sita-100%	
			RSD(%)-	
			MH-0.91	
			Rosi-0.72	
			Sita-1.121	
			Detection Wavelenght-227nm	
			Column-C18 Column	
	Metformin Hydrochloride,		(25cm44.6mmi.d5m)	
	Nateglinide,		Mobile Phase-	
19	Pioglitazone	HPLC	20mM Methanol: Potassium	[23]
	Hydrochloride		dihydrogen phosphate	
	In dosage form		buffer(85:15v/v)	
	-		Linearity Range(µg/ml)-	
			MH-50-250	

L

			Nate-3.0-15.0	
			PH-2-10	
			Regression Coefficient-0.999	
			Flow Rate-1.2ml/min	
			Injection Volume-201	
			Retention Time-	
			MH-2.15min	
			Nate-3.787min	
			PH-4.47min	
			Detector-U.V detector	
			%Recovery-	
			MH-100.03	
			Nate-99.84	
			PH-99.40	
			LOD(ug/ml)-	
			MH-0.03	
			Nate-0 22	
			PH_0 008	
			$I \cap O(ug/ml)_{-}$	
			MH = 0.00	
			Note 0.067	
			$\mathbf{PH} = 0.007$	
			Detection Wavelenght 227nm	
			Column A gilont TC	
			Column	
			(250) (180) (150)	
			(250mm4.6mm1.d.5m)	
			Mobile Phase-	
			Acetonitrile: Methanol: Water	
			(/0:10:20v/v)	
			Linearity Range(µg/ml)-	
			PH-5-30	
			MH-50-300	
			Glib-2-10	
	Pioglitazone		Regression Coefficient-0.9996	
	Hydrochloride, Metformin		Flow Rate-Imin/ml	
20	Hydrochloride and	RP-HPLC	Injection Volume-201	[24]
	Glibenclamide		Retention Time-	
	In Multicomponent		PH-6.82min	
	dosage form		HH-2.42min	
			Glib-9.40min	
			Detector-U.V detector	
			%Recoveries-	
			MH-99.76%	
			PH-100.12%	
			Glib-98.88%	
			LOD(µg/ml)-	
			PH-0.09	
			MH-0.46	
			Glib-0.32	
			LOO(ug/ml)-	

MH-1.2	
Mn-1.2	
Dista Pro Costad Silico col	
Aluminum plata	
(2010cm60E254)	
(2010cmoor 254) Mohile Phase-	
Toulene: Methanol: A cetic	
$\Delta_{\rm cid} (5:5:0.5)$	
Detection Wavelenght-	
MH-255nm	
PH-268nm	
Metformin Hydrochloride Linearity Range(ug/ml)-	
21 and Pioglitazone RP-TLC MH-3-12	[25]
Hydrohloride PH-3-20	
In bulk dosage form Regression Coefficient-	
MH-0.9999	
PH-0.9999	
Rf Value-	
MH-0.8	
PH-0.2	
%Recoveries-	
MH-99.9	
PH-1000.0	
Plate-Pre-Coated Silica –gel	
Aluminum Plate	
(2010cm101060F254	
Mobile Phase-Butanol:	
1,4dioxane:Glacial Acetic acid	
(5:3:2v/v/v)	
Detection Wavelenght-226nm	
Linearity Kange(µg/ml)-	
MH-2000-18000 DU 60 540	
Displitations Destroyation Coefficient 0,000	
22 Hydrochlorido and DD TLC Df Valuo	[26]
Metformin Hydrochloride MH 0 17 0 02	
PH-0.72-0.01	
%Recoveries-	
MH-98 62	
PH-100 62	
LOD(ug/ml)-	
MH-5 65	
PH-17.64	
LOO(ug/ml)-	
MH-0.259	
PH-0.786	
Metformin Hydrochloride Plate-Aluminum Sheets of	
23 and Pioglitazone HP-TLC Silica Gel 60F254	[27]
Hydrochloride Mobile phase-	

In Tablet Formulation	Butanol: 1.4dioxane :Glacial
	Acetic Acid $(5:3:2v/v/v)$
	Detection Wavelenght-226nm
	Linearity Range(ug/ml)-
	MH-2000-20000
	PH-60-600
	Regression Coefficient-
	MH-0.9999
	PH-0.9999
	Rf value-
	MH-0.36
	PH-0.73
	%Recoveries-
	MH-99.6
	PH-99.7
	LOD(µg/ml)-
	MH-629.8
	PH-1908.76
	LOQ(µg/ml)-
	MH-8.51 PH-25.77

CONCLUSION

The study summarizes the reported spectroscopic method for estimating Metformin Hydrochloride and Pioglitazone Hydrochloride in bulk and pharmaceutical dosage forms that have been developed and validated. In this investigation, it was discovered that multiple spectroscopic and chromatographic approaches are available for Metformin Hydrochloride and Pioglitazone Hydrochloride both alone and in combination with other medicines. These approaches are said to be simple, accurate, cost-effective, precise, and repeatable. RP-HPLC and UV absorbance detection were used in the majority of these procedures.

REFERENCES

- Pizzi, R.A. Defying diabetes: The discovery of Insulin. Mod. Drug Discovery, 2000; 3: 77-80.
- Leahy, J.L, Cooper, H.E, Deal, D.A. and Weir, G.C. Chronic hyperglycemia is associated with impaired glucose influence on insulin secreation. A study in normal rats using chronic in vivo glucose infusions. J. Clin. Invest, 1996; 77: 908-915.
- 3. Bell, G. I and Polonsky, K S. Diabetes mellitus and genetically programmed defects in beta-cell function. Nature, 2001; 414: 788-91.
- 4. Pubchem.ncbi.nlm.nih.gov
- 5. Yuvraj Dilip Dange, Sandip Mohan Honmane: Somnath Devidas Bhinge, Dhanraj Rangbunath Jadge. Department of Pharmaceutics Annasaheb Dange College of

Pharmacy, Ashta Shivaji University, Kolhapur, Maharashtra, India Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kalsegaon, Shivaji University, Kolhapur, Maharashtra, India.

- Mohammed Younus Ali ,P.V. Swany, Prashanth Borgaonkar and S. Appala Raju K.C.T College of Pharmacy Gulbarga(K.S) India H.K.Es College of Pharmacy, Sedam Road, Gulbarga-585105(K.S) India.
- K. sujana, G. Swathi Rani, M. Bhanu Prasad, M. Sahethi Reddy. Department of Pharmaceutical Analysis Mallareddy Institute of Pharmaceutical Science, Maisammaguda, secunderabad -500014.
- 8. AMR Lofty Saber Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt. Pak. J. Anal. Environ. chem, 2008; 9: 2118-121.
- Mohamed Aly Mohmoud Aly, Mohamed Aly Abd EL Degwy and Mohamed Aly Amin. Mepaco Pharmaceutical Company, Cairo, Egypt.
- Cijo. M. Xavier and Kanakapura Basavaiah Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
- 11. M. Sayeed Arayne, Najma Sultana Ana M. Hashim Zuberi. Department of Chemistry, University of Karachi -75270, Pakistan Research Institute of Pharmaceutical Sciences Faculty of Pharmacy, University of Karachi, Karachi -75270 Pakistan.
- 12. S. Sayed, A. Thomas, L. Kotapali Allana College of Pharmacy Camp, Pune.
- Surla Durga, Sappa pavani Naidu, Revu Baby Nalanda, Alta Srinivasa Rao, Bolla Nagamani.
- 14. Department of Pharmaceutical Analysis and Quality Assurance, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram -534202, Andhra Pradesh, India.
- 15. Corpuscle Research Solutions, Vishakhapathnam 530017, Andhra Pradesh, India.
- M. Alagar raja, CH. Usha Rani, David banji, K. N. V. Rao, D. Selva Kumar. Department of Pharmaceutical Analysis, Nalanda College of Pharmacy, Chelapally, Nalgonda -508001, Telangana, India.
- 17. School of Pharmacy, Taylors University Sabang Jaya, Malaysis.
- 18. P. K. Sahoo, R. Sharma and S.C. Chaturvedi School of Pharmacy, Devi Ahilya Vishwa vidhyalaya Takshashila Campus, Khandwa Road (Ring Road) Indore-452017, India.
- S. Vental Rao, Sankara Rao Gollu, A.Gopala Krishna, S. K. Ameer and K. Chandra Sekar Department of Chemistry Jawaharlal Nehru Technological University, Kukatpally, Hyderabad -500074 (India).

- 20. K.S Lalshmi, T. Rajesh, shrinivas Sharma Department of Pharmaceutical Analysis, SRM, college of Pharmacy, SRM, University Kottankulathur -603203, Tamil Nadu, India.
- 21. Department of Pharmacology, SRM, College of Pharmacy, SRM, University Kattankulathur -603203, Tamil Nadu.
- 22. Uttam Kumar Agarwal; Jeyabalan Govindasamy Department of Pharmacy, Sun Rise University, Alwar, Rajasthan, India.
- 23. Ali Saad Abdo Alwesabi, K. Mukkanti, K. Chandra Shekar. Analytical Chemistry, JNTU Hyderabad (India).
- 24. Institute of Science and Technology, JNTU, Hyderabad (India) Chandra Labs, Hyderabad (India).
- 25. Deepti Jain, Surendra Jain, Deepak Jain, Maulik Amin. School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Pharmacy, Shri Ravishankar College of Pharmacy.
- 26. Shende Mulchand A,Budde Balkrishna R. Department of Quality Assurance, Government College of Pharmacy, Kathora Naka, Amravati 4446045 (India).
- 27. Hitesh P. Inamdar and Ashok, A. Mhaske Getz Pharma Research Pvt. Ltd, Ambernath (East) Mumbai, Maharashtra, India.
- Shri Jagdishprasad Jhabarmal Tiberewala University, Chudela, Dist. Jhunjhuna -333001, Rajasthan, India.
- 29. Miral Rank, Dr. Pankaj Kapupara, Dr. Ketan Shaha. Department of Quality Assurance, School of Pharmacy, R.K University Kasturbadham, Rajkot-360020 Gujarat, India.
- Darshana K. modi, Bhavesh H. patel, Journal of Liquid Chromatography and Related Technologies, 2013; 35(5): 618-627.